These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
131 related items for PubMed ID: 13319307
1. The rôle of polyglutamyl pteridine coenzymes in serine metabolism. II. A comparison of various pteridine derivatives. WRIGHT BE. J Biol Chem; 1956 Apr; 219(2):873-83. PubMed ID: 13319307 [No Abstract] [Full Text] [Related]
2. The rôle of polyglutamyl pteridine coenzymes in serine metabolism. I. Cofactor requirements in the conversion of serine to glycine. WRIGHT BE, STADTMAN TC. J Biol Chem; 1956 Apr; 219(2):863-71. PubMed ID: 13319306 [No Abstract] [Full Text] [Related]
3. The role of polyglutamyl pteridine coenzymes in serine metabolism. III. The enzymatic formation of dihydrofolic acid and dihydroteropterin. WRIGHT BE, ANDERSON ML, HERMAN EC. J Biol Chem; 1958 Jan; 230(1):271-81. PubMed ID: 13502396 [No Abstract] [Full Text] [Related]
6. The interconversion of serine and glycine; some further properties of the enzyme system. BLAKLEY RL. Biochem J; 1957 Feb; 65(2):342-8. PubMed ID: 13403914 [No Abstract] [Full Text] [Related]
7. [Intensity of serine, aspartate and glutamate metabolism in brain and liver at different periods after injection of glycine-2C14]. Khodzhaĭova GK, Ivanenko EF. Vestn Leningr Univ Biol; 1970 Feb; 1():114-20. PubMed ID: 5472619 [No Abstract] [Full Text] [Related]
9. [Glutamate metabolism in rabbit renal cortex slices]. Busellu MA, Pocchiari F. Ann Ist Super Sanita; 1965 Feb; 1(9):548-54. PubMed ID: 5889570 [No Abstract] [Full Text] [Related]
10. [3H]D-serine labels strychnine-insensitive glycine recognition sites of rat central nervous system. Danysz W, Fadda E, Wroblewski JT, Costa E. Life Sci; 1990 Feb; 46(3):155-64. PubMed ID: 2154648 [Abstract] [Full Text] [Related]
11. Structural requirements of the tetrahydropteridine cofactor for the serine aldolase and the thymidylate synthetase reactions. GREENBERG DM, MALKIN LI, NATH R. Biochem Biophys Res Commun; 1960 Dec; 3():603-7. PubMed ID: 13708237 [No Abstract] [Full Text] [Related]
13. Commentary: The roles of folate and pteridine derivatives in neurotransmitter metabolism. Turner AJ. Biochem Pharmacol; 1977 Jun 01; 26(11):1009-14. PubMed ID: 18148 [No Abstract] [Full Text] [Related]
15. Inborn Errors of Metabolism with Seizures: Defects of Glycine and Serine Metabolism and Cofactor-Related Disorders. Almannai M, El-Hattab AW. Pediatr Clin North Am; 2018 Apr 01; 65(2):279-299. PubMed ID: 29502914 [Abstract] [Full Text] [Related]
17. Pyruvate metabolism in thiamine-deficient calves. Benevenga NJ, Baldwin RL, Ronning M, Black AL. J Nutr; 1967 Jan 01; 91(1):63-8. PubMed ID: 6018254 [No Abstract] [Full Text] [Related]
18. A major attachment site for D-serine in the cell wall mucopeptide of Micrococcus lysodeikticus. Whitney JG, Grula EA. Biochim Biophys Acta; 1968 Apr 16; 158(1):124-9. PubMed ID: 5652424 [No Abstract] [Full Text] [Related]
19. Expression of D-serine and glycine transporters in the prefrontal cortex and cerebellum in schizophrenia. Burnet PW, Hutchinson L, von Hesling M, Gilbert EJ, Brandon NJ, Rutter AR, Hutson PH, Harrison PJ. Schizophr Res; 2008 Jul 16; 102(1-3):283-94. PubMed ID: 18400471 [Abstract] [Full Text] [Related]
20. Therapeutic potential of pteridine derivatives: A comprehensive review. Carmona-Martínez V, Ruiz-Alcaraz AJ, Vera M, Guirado A, Martínez-Esparza M, García-Peñarrubia P. Med Res Rev; 2019 Mar 16; 39(2):461-516. PubMed ID: 30341778 [Abstract] [Full Text] [Related] Page: [Next] [New Search]