These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


142 related items for PubMed ID: 1335356

  • 21. ATPase and shortening rates in frog fast skeletal myofibrils by time-resolved measurements of protein-bound and free Pi.
    Barman T, Brune M, Lionne C, Piroddi N, Poggesi C, Stehle R, Tesi C, Travers F, Webb MR.
    Biophys J; 1998 Jun; 74(6):3120-30. PubMed ID: 9635765
    [Abstract] [Full Text] [Related]

  • 22. Quantitative histochemistry of three mouse hind-limb muscles: the relationship between calcium-stimulated myofibrillar ATPase and succinate dehydrogenase activities.
    van der Laarse WJ, Diegenbach PC, Maslam S.
    Histochem J; 1984 May; 16(5):529-41. PubMed ID: 6234263
    [Abstract] [Full Text] [Related]

  • 23. Time resolved measurements show that phosphate release is the rate limiting step on myofibrillar ATPases.
    Lionne C, Brune M, Webb MR, Travers F, Barman T.
    FEBS Lett; 1995 May 01; 364(1):59-62. PubMed ID: 7750544
    [Abstract] [Full Text] [Related]

  • 24. Modulation of Ca2+ control of dog and rabbit cardiac myofibrils by Mg2+. Comparison with rabbit skeletal myofibrils.
    Solaro RJ, Shiner JS.
    Circ Res; 1976 Jul 01; 39(1):8-14. PubMed ID: 132310
    [Abstract] [Full Text] [Related]

  • 25. Mechanochemical coupling in muscle: attempts to measure simultaneously shortening and ATPase rates in myofibrils.
    Lionne C, Travers F, Barman T.
    Biophys J; 1996 Feb 01; 70(2):887-95. PubMed ID: 8789106
    [Abstract] [Full Text] [Related]

  • 26. Effects of pH on myofibrillar ATPase activity in fast and slow skeletal muscle fibers of the rabbit.
    Potma EJ, van Graas IA, Stienen GJ.
    Biophys J; 1994 Dec 01; 67(6):2404-10. PubMed ID: 7696480
    [Abstract] [Full Text] [Related]

  • 27. Function of M-line-bound creatine kinase as intramyofibrillar ATP regenerator at the receiving end of the phosphorylcreatine shuttle in muscle.
    Wallimann T, Schlösser T, Eppenberger HM.
    J Biol Chem; 1984 Apr 25; 259(8):5238-46. PubMed ID: 6143755
    [Abstract] [Full Text] [Related]

  • 28. Calcium regulation of cardiac myofibrillar activation: effects of MgATP.
    Solaro RJ.
    J Supramol Struct; 1975 Apr 25; 3(4):368-75. PubMed ID: 127891
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36. Maximum velocity of shortening related to myosin isoform composition in frog skeletal muscle fibres.
    Edman KA, Reggiani C, Schiaffino S, te Kronnie G.
    J Physiol; 1988 Jan 25; 395():679-94. PubMed ID: 2970539
    [Abstract] [Full Text] [Related]

  • 37. Effects of pH on contraction of rabbit fast and slow skeletal muscle fibers.
    Chase PB, Kushmerick MJ.
    Biophys J; 1988 Jun 25; 53(6):935-46. PubMed ID: 2969265
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. ATP utilization for calcium uptake and force production in skinned muscle fibres of Xenopus laevis.
    Stienen GJ, Zaremba R, Elzinga G.
    J Physiol; 1995 Jan 01; 482 ( Pt 1)(Pt 1):109-22. PubMed ID: 7730976
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.