These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
360 related items for PubMed ID: 1360684
1. A model of bipedal locomotion on compliant legs. Alexander RM. Philos Trans R Soc Lond B Biol Sci; 1992 Oct 29; 338(1284):189-98. PubMed ID: 1360684 [Abstract] [Full Text] [Related]
2. A theory of metabolic costs for bipedal gaits. Minetti AE, Alexander RM. J Theor Biol; 1997 Jun 21; 186(4):467-76. PubMed ID: 9278722 [Abstract] [Full Text] [Related]
3. Patterns of mechanical energy change in tetrapod gait: pendula, springs and work. Biewener AA. J Exp Zool A Comp Exp Biol; 2006 Nov 01; 305(11):899-911. PubMed ID: 17029267 [Abstract] [Full Text] [Related]
6. Muscle mechanical work and elastic energy utilization during walking and running near the preferred gait transition speed. Sasaki K, Neptune RR. Gait Posture; 2006 Apr 01; 23(3):383-90. PubMed ID: 16029949 [Abstract] [Full Text] [Related]
7. Computer optimization of a minimal biped model discovers walking and running. Srinivasan M, Ruina A. Nature; 2006 Jan 05; 439(7072):72-5. PubMed ID: 16155564 [Abstract] [Full Text] [Related]
11. A collisional model of the energetic cost of support work qualitatively explains leg sequencing in walking and galloping, pseudo-elastic leg behavior in running and the walk-to-run transition. Ruina A, Bertram JE, Srinivasan M. J Theor Biol; 2005 Nov 21; 237(2):170-92. PubMed ID: 15961114 [Abstract] [Full Text] [Related]
12. Small step or giant leap? Human locomotion on Mars. Hawkey A. J Br Interplanet Soc; 2004 Nov 21; 57(7-8):262-70. PubMed ID: 15856558 [Abstract] [Full Text] [Related]
13. Steady and transient coordination structures of walking and running. Lamoth CJ, Daffertshofer A, Huys R, Beek PJ. Hum Mov Sci; 2009 Jun 21; 28(3):371-86. PubMed ID: 19027972 [Abstract] [Full Text] [Related]
14. Footfall dynamics for racewalkers and runners barefoot on compliant surfaces. Wilson JF, Rochelle RD. J Biomech; 2009 Nov 13; 42(15):2472-8. PubMed ID: 19682693 [Abstract] [Full Text] [Related]
15. Preferred and energetically optimal gait transition speeds in human locomotion. Hreljac A. Med Sci Sports Exerc; 1993 Oct 13; 25(10):1158-62. PubMed ID: 8231761 [Abstract] [Full Text] [Related]
16. Bipedal walking and running with spring-like biarticular muscles. Iida F, Rummel J, Seyfarth A. J Biomech; 2008 Oct 13; 41(3):656-67. PubMed ID: 17996242 [Abstract] [Full Text] [Related]
17. Mechanical energy in toddler gait. A trade-off between economy and stability? Hallemans A, Aerts P, Otten B, De Deyn PP, De Clercq D. J Exp Biol; 2004 Jun 13; 207(Pt 14):2417-31. PubMed ID: 15184514 [Abstract] [Full Text] [Related]
18. Mechanical energy and effective foot mass during impact loading of walking and running. Chi KJ, Schmitt D. J Biomech; 2005 Jul 13; 38(7):1387-95. PubMed ID: 15922749 [Abstract] [Full Text] [Related]
19. Walking speed influences on gait cycle variability. Jordan K, Challis JH, Newell KM. Gait Posture; 2007 Jun 13; 26(1):128-34. PubMed ID: 16982195 [Abstract] [Full Text] [Related]
20. Assessment of human locomotion by using an insole measurement system and artificial neural networks. Zhang K, Sun M, Lester DK, Pi-Sunyer FX, Boozer CN, Longman RW. J Biomech; 2005 Nov 13; 38(11):2276-87. PubMed ID: 16154415 [Abstract] [Full Text] [Related] Page: [Next] [New Search]