These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


150 related items for PubMed ID: 13679133

  • 21. Stimulus frequency otoacoustic emissions evoked by swept tones.
    Chen S, Deng J, Bian L, Li G.
    Hear Res; 2013 Dec; 306():104-14. PubMed ID: 24113114
    [Abstract] [Full Text] [Related]

  • 22. Amplitude and phase of distortion product otoacoustic emissions in the guinea pig in an (f1 ,f2) area study.
    Schneider S, Prijs VF, Schoonhoven R.
    J Acoust Soc Am; 2003 Jun; 113(6):3285-96. PubMed ID: 12822801
    [Abstract] [Full Text] [Related]

  • 23. A comparison of OAEs arising from different generation mechanisms in guinea pig.
    Withnell RH, Dhar S, Thomsen A.
    Hear Res; 2005 Sep; 207(1-2):76-86. PubMed ID: 15935577
    [Abstract] [Full Text] [Related]

  • 24. Characterizing the Relationship Between Reflection and Distortion Otoacoustic Emissions in Normal-Hearing Adults.
    Abdala C, Luo P, Shera CA.
    J Assoc Res Otolaryngol; 2022 Oct; 23(5):647-664. PubMed ID: 35804277
    [Abstract] [Full Text] [Related]

  • 25. Nonlinear reflection as a cause of the short-latency component in stimulus-frequency otoacoustic emissions simulated by the methods of compression and suppression.
    Vencovský V, Vetešník A, Gummer AW.
    J Acoust Soc Am; 2020 Jun; 147(6):3992. PubMed ID: 32611132
    [Abstract] [Full Text] [Related]

  • 26. The effect of suppression on the periodicity of stimulus frequency otoacoustic emissions: experimental data.
    Lineton B, Lutman ME.
    J Acoust Soc Am; 2003 Aug; 114(2):871-82. PubMed ID: 12942969
    [Abstract] [Full Text] [Related]

  • 27. Profiles of Stimulus-Frequency Otoacoustic Emissions from 0.5 to 20 kHz in Humans.
    Dewey JB, Dhar S.
    J Assoc Res Otolaryngol; 2017 Feb; 18(1):89-110. PubMed ID: 27681700
    [Abstract] [Full Text] [Related]

  • 28. Effects of low-frequency biasing on otoacoustic and neural measures suggest that stimulus-frequency otoacoustic emissions originate near the peak region of the traveling wave.
    Lichtenhan JT.
    J Assoc Res Otolaryngol; 2012 Feb; 13(1):17-28. PubMed ID: 22002610
    [Abstract] [Full Text] [Related]

  • 29. Intensimetric detection of distortion product otoacoustic emissions with ear canal calibration.
    Sisto R, Cerini L, Sanjust F, Moleti A.
    J Acoust Soc Am; 2017 Jul; 142(1):EL13. PubMed ID: 28764449
    [Abstract] [Full Text] [Related]

  • 30. Interrelationships between spontaneous and low-level stimulus-frequency otoacoustic emissions in humans.
    Bergevin C, Fulcher A, Richmond S, Velenovsky D, Lee J.
    Hear Res; 2012 Mar; 285(1-2):20-8. PubMed ID: 22509533
    [Abstract] [Full Text] [Related]

  • 31. Comparison of time-frequency methods for analyzing stimulus frequency otoacoustic emissions.
    Biswal M, Mishra SK.
    J Acoust Soc Am; 2018 Feb; 143(2):626. PubMed ID: 29495731
    [Abstract] [Full Text] [Related]

  • 32. Reflection-Source Emissions Evoked with Clicks and Frequency Sweeps: Comparisons Across Levels.
    Charaziak KK, Shera CA.
    J Assoc Res Otolaryngol; 2021 Dec; 22(6):641-658. PubMed ID: 34606020
    [Abstract] [Full Text] [Related]

  • 33. Transient-evoked stimulus-frequency and distortion-product otoacoustic emissions in normal and impaired ears.
    Konrad-Martin D, Keefe DH.
    J Acoust Soc Am; 2005 Jun; 117(6):3799-815. PubMed ID: 16018483
    [Abstract] [Full Text] [Related]

  • 34. Sources of DPOAEs revealed by suppression experiments, inverse fast Fourier transforms, and SFOAEs in impaired ears.
    Konrad-Martin D, Neely ST, Keefe DH, Dorn PA, Cyr E, Gorga MP.
    J Acoust Soc Am; 2002 Apr; 111(4):1800-9. PubMed ID: 12002864
    [Abstract] [Full Text] [Related]

  • 35. Input-output functions for stimulus-frequency otoacoustic emissions in normal-hearing adult ears.
    Schairer KS, Fitzpatrick D, Keefe DH.
    J Acoust Soc Am; 2003 Aug; 114(2):944-66. PubMed ID: 12942975
    [Abstract] [Full Text] [Related]

  • 36. Testing coherent reflection in chinchilla: Auditory-nerve responses predict stimulus-frequency emissions.
    Shera CA, Tubis A, Talmadge CL.
    J Acoust Soc Am; 2008 Jul; 124(1):381-95. PubMed ID: 18646984
    [Abstract] [Full Text] [Related]

  • 37. In search of basal distortion product generators.
    Withnell RH, Lodde J.
    J Acoust Soc Am; 2006 Oct; 120(4):2116-23. PubMed ID: 17069309
    [Abstract] [Full Text] [Related]

  • 38. Characterizing a Joint Reflection-Distortion OAE Profile in Humans With Endolymphatic Hydrops.
    Stiepan S, Shera CA, Abdala C.
    Ear Hear; 2006 Oct; 44(6):1437-1450. PubMed ID: 37450653
    [Abstract] [Full Text] [Related]

  • 39. Efferent-mediated reduction in cochlear gain does not alter tuning estimates from stimulus-frequency otoacoustic emission group delays.
    Bhagat SP, Kilgore C.
    Neurosci Lett; 2014 Jan 24; 559():132-5. PubMed ID: 24333175
    [Abstract] [Full Text] [Related]

  • 40. Measuring stimulus-frequency otoacoustic emissions using swept tones.
    Kalluri R, Shera CA.
    J Acoust Soc Am; 2013 Jul 24; 134(1):356-68. PubMed ID: 23862813
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.