These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
163 related items for PubMed ID: 1368471
1. Reductive dechlorination of 1,2-dichloroethane and chloroethane by cell suspensions of methanogenic bacteria. Holliger C, Schraa G, Stams AJ, Zehnder AJ. Biodegradation; 1990; 1(4):253-61. PubMed ID: 1368471 [Abstract] [Full Text] [Related]
2. Methyl-coenzyme M reductase of Methanobacterium thermoautotrophicum delta H catalyzes the reductive dechlorination of 1,2-dichloroethane to ethylene and chloroethane. Holliger C, Kengen SW, Schraa G, Stams AJ, Zehnder AJ. J Bacteriol; 1992 Jul; 174(13):4435-43. PubMed ID: 1624435 [Abstract] [Full Text] [Related]
3. Evidence for the involvement of corrinoids and factor F430 in the reductive dechlorination of 1,2-dichloroethane by Methanosarcina barkeri. Holliger C, Schraa G, Stupperich E, Stams AJ, Zehnder AJ. J Bacteriol; 1992 Jul; 174(13):4427-34. PubMed ID: 1624434 [Abstract] [Full Text] [Related]
4. Acidification and sulfide formation control during reductive dechlorination of 1,2-dichloroethane in groundwater: Effectiveness and mechanistic study. Wang SY, Chen SC, Lin YC, Kuo YC, Chen JY, Kao CM. Chemosphere; 2016 Oct; 160():216-29. PubMed ID: 27376861 [Abstract] [Full Text] [Related]
5. Bioremediation of 1,2-dichloroethane contaminated groundwater: Microcosm and microbial diversity studies. Wang SY, Kuo YC, Huang YZ, Huang CW, Kao CM. Environ Pollut; 2015 Aug; 203():97-106. PubMed ID: 25863886 [Abstract] [Full Text] [Related]
6. Reductive dechlorination of 1,2-dichloroethane in the presence of chloroethenes and 1,2-dichloropropane as co-contaminants. Peng P, Schneidewind U, Haest PJ, Bosma TNP, Danko AS, Smidt H, Atashgahi S. Appl Microbiol Biotechnol; 2019 Aug; 103(16):6837-6849. PubMed ID: 31250061 [Abstract] [Full Text] [Related]
7. Role of methanogenic and sulfate-reducing bacteria in the reductive dechlorination of tetrachloroethylene in mixed culture. Cabirol N, Perrier J, Jacob F, Fouillet B, Chambon P. Bull Environ Contam Toxicol; 1996 May; 56(5):817-24. PubMed ID: 8661867 [No Abstract] [Full Text] [Related]
8. Dependence of tetrachloroethylene dechlorination on methanogenic substrate consumption by Methanosarcina sp. strain DCM. Fathepure BZ, Boyd SA. Appl Environ Microbiol; 1988 Dec; 54(12):2976-80. PubMed ID: 3223763 [Abstract] [Full Text] [Related]
9. 1,1,1-trichloroethane and 1,1-dichloroethane reductive dechlorination kinetics and co-contaminant effects in a Dehalobacter-containing mixed culture. Grostern A, Chan WW, Edwards EA. Environ Sci Technol; 2009 Sep 01; 43(17):6799-807. PubMed ID: 19764252 [Abstract] [Full Text] [Related]
10. Chloroform degradation in methanogenic methanol enrichment cultures and by Methanosarcina barkeri 227. Bagley DM, Gossett JM. Appl Environ Microbiol; 1995 Sep 01; 61(9):3195-201. PubMed ID: 7574627 [Abstract] [Full Text] [Related]
11. Effect of competitive terminal electron acceptor processes on dechlorination of cis-1,2-dichloroethene and 1,2-dichloroethane in constructed wetland soils. Kassenga GR, Pardue JH. FEMS Microbiol Ecol; 2006 Aug 01; 57(2):311-23. PubMed ID: 16867148 [Abstract] [Full Text] [Related]
12. Diverse Reductive Dehalogenases Are Associated with Clostridiales-Enriched Microcosms Dechlorinating 1,2-Dichloroethane. Merlino G, Balloi A, Marzorati M, Mapelli F, Rizzi A, Lavazza D, de Ferra F, Carpani G, Daffonchio D. Biomed Res Int; 2015 Aug 01; 2015():242856. PubMed ID: 26273600 [Abstract] [Full Text] [Related]
13. Effect of nickel, cobalt, and iron on methanogenesis from methanol and cometabolic conversion of 1,2-dichloroethene by Methanosarcina barkeri. Paulo LM, Hidayat MR, Moretti G, Stams AJM, Sousa DZ. Biotechnol Appl Biochem; 2020 Sep 01; 67(5):744-750. PubMed ID: 32282086 [Abstract] [Full Text] [Related]
14. Ethane production by Methanosarcina barkeri during growth in ethanol supplemented medium. Belay N, Daniels L. Antonie Van Leeuwenhoek; 1988 Sep 01; 54(2):113-25. PubMed ID: 3395108 [Abstract] [Full Text] [Related]
15. Effect of hydrogen on the pathway and products of PCB dechlorination. Sokol RC, Bethoney CM, Rhee GY. Chemosphere; 1994 Oct 01; 29(8):1735-42. PubMed ID: 7804727 [Abstract] [Full Text] [Related]
16. Methane formation and methane oxidation by methanogenic bacteria. Zehnder AJ, Brock TD. J Bacteriol; 1979 Jan 01; 137(1):420-32. PubMed ID: 762019 [Abstract] [Full Text] [Related]
17. Degradation of 1,2-dichloroethane by microbial communities from river sediment at various redox conditions. van der Zaan B, de Weert J, Rijnaarts H, de Vos WM, Smidt H, Gerritse J. Water Res; 2009 Jul 01; 43(13):3207-16. PubMed ID: 19501382 [Abstract] [Full Text] [Related]
18. Hydrogen thresholds as indicators of dehalorespiration in constructed treatment wetlands. Kassenga G, Pardue JH, Moe WM, Bowman KS. Environ Sci Technol; 2004 Feb 15; 38(4):1024-30. PubMed ID: 14998014 [Abstract] [Full Text] [Related]
19. Proton-motive-force-driven formation of CO from CO2 and H2 in methanogenic bacteria. Bott M, Thauer RK. Eur J Biochem; 1987 Oct 15; 168(2):407-12. PubMed ID: 2822415 [Abstract] [Full Text] [Related]
20. Biodegradation of vinyl chloride, cis-dichloroethene and 1,2-dichloroethane in the alkene/alkane-oxidising Mycobacterium strain NBB4. Le NB, Coleman NV. Biodegradation; 2011 Nov 15; 22(6):1095-108. PubMed ID: 21365473 [Abstract] [Full Text] [Related] Page: [Next] [New Search]