These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
176 related items for PubMed ID: 1368984
1. Metabolic engineering of Candida tropicalis for the production of long-chain dicarboxylic acids. Picataggio S, Rohrer T, Deanda K, Lanning D, Reynolds R, Mielenz J, Eirich LD. Biotechnology (N Y); 1992 Aug; 10(8):894-8. PubMed ID: 1368984 [Abstract] [Full Text] [Related]
2. Candida guilliermondii as a potential biocatalyst for the production of long-chain α,ω-dicarboxylic acids. Werner N, Dreyer M, Wagner W, Papon N, Rupp S, Zibek S. Biotechnol Lett; 2017 Mar; 39(3):429-438. PubMed ID: 27904981 [Abstract] [Full Text] [Related]
3. Identification and characterization of the CYP52 family of Candida tropicalis ATCC 20336, important for the conversion of fatty acids and alkanes to alpha,omega-dicarboxylic acids. Craft DL, Madduri KM, Eshoo M, Wilson CR. Appl Environ Microbiol; 2003 Oct; 69(10):5983-91. PubMed ID: 14532053 [Abstract] [Full Text] [Related]
6. The omega-hydroxlyation of lauric acid: oxidation of 12-hydroxlauric acid to dodecanedioic acid by a purified recombinant fusion protein containing P450 4A1 and NADPH-P450 reductase. Shet Ms, Fisher CW, Holmans PL, Estabrook RW. Arch Biochem Biophys; 1996 Jun 01; 330(1):199-208. PubMed ID: 8651697 [Abstract] [Full Text] [Related]
7. Cytochrome P450BM-3 (CYP102): regiospecificity of oxidation of omega-unsaturated fatty acids and mechanism-based inactivation. Shirane N, Sui Z, Peterson JA, Ortiz de Montellano PR. Biochemistry; 1993 Dec 14; 32(49):13732-41. PubMed ID: 8257708 [Abstract] [Full Text] [Related]
8. Enhanced induction of cytochromes P450alk that oxidize methyl-ends of n-alkanes and fatty acids in the long-chain dicarboxylic acid-hyperproducing mutant of Candida maltosa. Kogure T, Horiuchi H, Matsuda H, Arie M, Takagi M, Ohta A. FEMS Microbiol Lett; 2007 Jun 14; 271(1):106-11. PubMed ID: 17403051 [Abstract] [Full Text] [Related]
9. Genome-scale metabolic modeling and in silico analysis of lipid accumulating yeast Candida tropicalis for dicarboxylic acid production. Mishra P, Park GY, Lakshmanan M, Lee HS, Lee H, Chang MW, Ching CB, Ahn J, Lee DY. Biotechnol Bioeng; 2016 Sep 14; 113(9):1993-2004. PubMed ID: 26915092 [Abstract] [Full Text] [Related]
10. Biocatalyst engineering by assembly of fatty acid transport and oxidation activities for In vivo application of cytochrome P-450BM-3 monooxygenase. Schneider S, Wubbolts MG, Sanglard D, Witholt B. Appl Environ Microbiol; 1998 Oct 14; 64(10):3784-90. PubMed ID: 9758800 [Abstract] [Full Text] [Related]
11. Repression of fatty-acyl-CoA oxidase-encoding gene expression is not necessarily a determinant of high-level production of dicarboxylic acids in industrial dicarboxylic-acid-producing Candida tropicalis. Hara A, Ueda M, Matsui T, Arie M, Saeki H, Matsuda H, Furuhashi K, Kanai T, Tanaka A. Appl Microbiol Biotechnol; 2001 Aug 14; 56(3-4):478-85. PubMed ID: 11549023 [Abstract] [Full Text] [Related]
12. Enhancement of α,ω-Dicarboxylic Acid Production by the Expression of Xylose Reductase for Refactoring Redox Cofactor Regeneration. Sathesh-Prabu C, Lee SK. J Agric Food Chem; 2018 Apr 04; 66(13):3489-3497. PubMed ID: 29537267 [Abstract] [Full Text] [Related]
13. [Effect of ctpxa1 gene deletion in Candida tropicalis on long chain dicarboxylic acid accumulation]. Cheng C, Wang J, Wang T, Yang X, Wang R. Sheng Wu Gong Cheng Xue Bao; 2017 Feb 25; 33(2):237-246. PubMed ID: 28956380 [Abstract] [Full Text] [Related]
14. Fatty acid discrimination and omega-hydroxylation by cytochrome P450 4A1 and a cytochrome P4504A1/NADPH-P450 reductase fusion protein. Alterman MA, Chaurasia CS, Lu P, Hardwick JP, Hanzlik RP. Arch Biochem Biophys; 1995 Jul 10; 320(2):289-96. PubMed ID: 7625836 [Abstract] [Full Text] [Related]
15. Engineering the acetyl-CoA transportation system of candida tropicalis enhances the production of dicarboxylic acid. Cao Z, Gao H, Liu M, Jiao P. Biotechnol J; 2006 Jan 10; 1(1):68-74. PubMed ID: 16892226 [Abstract] [Full Text] [Related]
16. Candida yeast long chain fatty alcohol oxidase is a c-type haemoprotein and plays an important role in long chain fatty acid metabolism. Cheng Q, Sanglard D, Vanhanen S, Liu HT, Bombelli P, Smith A, Slabas AR. Biochim Biophys Acta; 2005 Aug 15; 1735(3):192-203. PubMed ID: 16046182 [Abstract] [Full Text] [Related]
17. Production of Long-Chain α,ω-Dicarboxylic Acids by Engineered Escherichia coli from Renewable Fatty Acids and Plant Oils. Sathesh-Prabu C, Lee SK. J Agric Food Chem; 2015 Sep 23; 63(37):8199-208. PubMed ID: 26359801 [Abstract] [Full Text] [Related]
18. Fungal cytochrome P450 monooxygenases of Fusarium oxysporum for the synthesis of ω-hydroxy fatty acids in engineered Saccharomyces cerevisiae. Durairaj P, Malla S, Nadarajan SP, Lee PG, Jung E, Park HH, Kim BG, Yun H. Microb Cell Fact; 2015 Apr 02; 14():45. PubMed ID: 25880760 [Abstract] [Full Text] [Related]
19. Characterization of the human omega-oxidation pathway for omega-hydroxy-very-long-chain fatty acids. Sanders RJ, Ofman R, Dacremont G, Wanders RJ, Kemp S. FASEB J; 2008 Jun 02; 22(6):2064-71. PubMed ID: 18182499 [Abstract] [Full Text] [Related]
20. Characterization of the newly isolated ω-oxidizing yeast Candida sorbophila DS02 and its potential applications in long-chain dicarboxylic acid production. Lee H, Sugiharto YEC, Lee S, Park G, Han C, Jang H, Jeon W, Park H, Ahn J, Kang K, Lee H. Appl Microbiol Biotechnol; 2017 Aug 02; 101(16):6333-6342. PubMed ID: 28589225 [Abstract] [Full Text] [Related] Page: [Next] [New Search]