These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
261 related items for PubMed ID: 1373362
1. Reinforcement of subliminal flexion reflexes by transcranial magnetic stimulation of motor cortex in subjects with spinal cord injury. Hayes KC, Allatt RD, Wolfe DL, Kasai T, Hsieh J. Electroencephalogr Clin Neurophysiol; 1992 Apr; 85(2):102-9. PubMed ID: 1373362 [Abstract] [Full Text] [Related]
2. Reinforcement of motor evoked potentials in patients with spinal cord injury. Hayes KC, Allatt RD, Wolfe DL, Kasai T, Hsieh J. Electroencephalogr Clin Neurophysiol Suppl; 1991 Apr; 43():312-29. PubMed ID: 1773771 [Abstract] [Full Text] [Related]
3. Afferent conditioning of motor evoked potentials following transcranial magnetic stimulation of motor cortex in normal subjects. Kasai T, Hayes KC, Wolfe DL, Allatt RD. Electroencephalogr Clin Neurophysiol; 1992 Apr; 85(2):95-101. PubMed ID: 1373371 [Abstract] [Full Text] [Related]
4. Conditioning lower limb H-reflexes by transcranial magnetic stimulation of motor cortex reveals preserved innervation in SCI patients. Wolfe DL, Hayes KC, Potter PJ, Delaney GA. J Neurotrauma; 1996 Jun; 13(6):281-91. PubMed ID: 8835796 [Abstract] [Full Text] [Related]
5. Distribution and latency of muscle responses to transcranial magnetic stimulation of motor cortex after spinal cord injury in humans. Calancie B, Alexeeva N, Broton JG, Suys S, Hall A, Klose KJ. J Neurotrauma; 1999 Jan; 16(1):49-67. PubMed ID: 9989466 [Abstract] [Full Text] [Related]
6. Latency of changes in spinal motoneuron excitability evoked by transcranial magnetic brain stimulation in spinal cord injured individuals. Alexeeva N, Broton JG, Calancie B. Electroencephalogr Clin Neurophysiol; 1998 Aug; 109(4):297-303. PubMed ID: 9751291 [Abstract] [Full Text] [Related]
7. Afferent regulation of leg motor cortex excitability after incomplete spinal cord injury. Roy FD, Yang JF, Gorassini MA. J Neurophysiol; 2010 Apr; 103(4):2222-33. PubMed ID: 20181733 [Abstract] [Full Text] [Related]
8. Convergence of flexor reflex and corticospinal inputs on tibialis anterior network in humans. Mackey AS, Uttaro D, McDonough MP, Krivis LI, Knikou M. Clin Neurophysiol; 2016 Jan; 127(1):706-715. PubMed ID: 26122072 [Abstract] [Full Text] [Related]
9. Windup of flexion reflexes in chronic human spinal cord injury: a marker for neuronal plateau potentials? Hornby TG, Rymer WZ, Benz EN, Schmit BD. J Neurophysiol; 2003 Jan; 89(1):416-26. PubMed ID: 12522190 [Abstract] [Full Text] [Related]
10. Spinal inhibition of descending command to soleus motoneurons is removed prior to dorsiflexion. Geertsen SS, van de Ruit M, Grey MJ, Nielsen JB. J Physiol; 2011 Dec 01; 589(Pt 23):5819-31. PubMed ID: 21986208 [Abstract] [Full Text] [Related]
11. Evidence suggesting that a transcortical reflex pathway contributes to cutaneous reflexes in the tibialis anterior muscle during walking in man. Christensen LO, Morita H, Petersen N, Nielsen J. Exp Brain Res; 1999 Jan 01; 124(1):59-68. PubMed ID: 9928790 [Abstract] [Full Text] [Related]
12. Parallel facilitatory reflex pathways from the foot and hip to flexors and extensors in the injured human spinal cord. Knikou M, Kay E, Schmit BD. Exp Neurol; 2007 Jul 01; 206(1):146-58. PubMed ID: 17543951 [Abstract] [Full Text] [Related]
13. Conditioning effects of sural nerve stimulation on short and long latency motor evoked potentials in lower limb muscles. Wolfe DL, Hayes KC. Electroencephalogr Clin Neurophysiol; 1995 Feb 01; 97(1):11-7. PubMed ID: 7533716 [Abstract] [Full Text] [Related]
14. Changes in segmental and motor cortical output with contralateral muscle contractions and altered sensory inputs in humans. Hortobágyi T, Taylor JL, Petersen NT, Russell G, Gandevia SC. J Neurophysiol; 2003 Oct 01; 90(4):2451-9. PubMed ID: 14534271 [Abstract] [Full Text] [Related]
15. Spike-timing-dependent plasticity in lower-limb motoneurons after human spinal cord injury. Urbin MA, Ozdemir RA, Tazoe T, Perez MA. J Neurophysiol; 2017 Oct 01; 118(4):2171-2180. PubMed ID: 28468994 [Abstract] [Full Text] [Related]
16. Motor cortex excitability following short trains of repetitive magnetic stimuli. Modugno N, Nakamura Y, MacKinnon CD, Filipovic SR, Bestmann S, Berardelli A, Rothwell JC. Exp Brain Res; 2001 Oct 01; 140(4):453-9. PubMed ID: 11685398 [Abstract] [Full Text] [Related]
17. Effect of stimulus intensity and voluntary contraction on corticospinal potentials following transcranial magnetic stimulation. Kaneko K, Kawai S, Fuchigami Y, Shiraishi G, Ito T. J Neurol Sci; 1996 Jul 01; 139(1):131-6. PubMed ID: 8836984 [Abstract] [Full Text] [Related]
18. Long-latency spinal reflex in man after flexor reflex afferent stimulation. Roby-Brami A, Bussel B. Brain; 1987 Jun 01; 110 ( Pt 3)():707-25. PubMed ID: 3107749 [Abstract] [Full Text] [Related]
19. Contribution of muscle afferents to prolonged flexion withdrawal reflexes in human spinal cord injury. Hornby TG, Tysseling-Mattiace VM, Benz EN, Schmit BD. J Neurophysiol; 2004 Dec 01; 92(6):3375-84. PubMed ID: 15254071 [Abstract] [Full Text] [Related]
20. Spastic long-lasting reflexes in the awake rat after sacral spinal cord injury. Bennett DJ, Sanelli L, Cooke CL, Harvey PJ, Gorassini MA. J Neurophysiol; 2004 May 01; 91(5):2247-58. PubMed ID: 15069102 [Abstract] [Full Text] [Related] Page: [Next] [New Search]