These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


509 related items for PubMed ID: 137908

  • 1. Differences in neutral amino acid and glucose transport between brush border and basolateral plasma membrane of intestinal epithelial cells.
    Hopfer U, Sigrist-Nelson K, Ammann E, Murer H.
    J Cell Physiol; 1976 Dec; 89(4):805-10. PubMed ID: 137908
    [Abstract] [Full Text] [Related]

  • 2. Carbohydrate absorption. Studies on the glucose transport by isolated brush border membranes. A contribution towards an understanding of the molecular mechanism of sugar absorption.
    Hopper U.
    Bibl Nutr Dieta; 1975 Dec; (22):42-9. PubMed ID: 1095010
    [Abstract] [Full Text] [Related]

  • 3. Sugar and amino acid transport in animal cells.
    Hopfer U.
    Horiz Biochem Biophys; 1976 Dec; 2():106-33. PubMed ID: 6372
    [Abstract] [Full Text] [Related]

  • 4. Na+-independent D-glucose transport in rabbit renal basolateral membranes.
    Cheung PT, Hammerman MR.
    Am J Physiol; 1988 May; 254(5 Pt 2):F711-8. PubMed ID: 3364579
    [Abstract] [Full Text] [Related]

  • 5. High-affinity phlorizin binding to brush border membranes from small intestine: identity with (a part of) the glucose transport system, dependence on Na +-gradient, partial purification.
    Tannenbaum C, Toggenburger G, Kessler M, Rothstein A, Semenza G.
    J Supramol Struct; 1977 May; 6(4):519-33. PubMed ID: 413010
    [Abstract] [Full Text] [Related]

  • 6. Effect of phloretin on Na+-dependent D-glucose uptake by intestinal brush border membrane vesicles.
    Yokota K, Nishi Y, Takesue Y.
    Biochem Pharmacol; 1983 Nov 15; 32(22):3453-7. PubMed ID: 6651868
    [Abstract] [Full Text] [Related]

  • 7. Transport of p-aminohippurate, tetraethylammonium and D-glucose in renal brush border membranes from rats with acute renal failure.
    Hori R, Takano M, Okano T, Inui K.
    J Pharmacol Exp Ther; 1985 Jun 15; 233(3):776-81. PubMed ID: 2989496
    [Abstract] [Full Text] [Related]

  • 8. [Membrane function of the kidney].
    Kinne R.
    Bull Schweiz Akad Med Wiss; 1976 Dec 15; 32(4-6):251-76. PubMed ID: 137758
    [Abstract] [Full Text] [Related]

  • 9. Characterization and histochemical localization of the rat intestinal Na(+)-D-glucose cotransporter by monoclonal antibodies.
    Haase W, Heitmann K, Friese W, Ollig D, Koepsell H.
    Eur J Cell Biol; 1990 Aug 15; 52(2):297-309. PubMed ID: 2081531
    [Abstract] [Full Text] [Related]

  • 10. Cl- and membrane potential dependence of amino acid transport across the rat renal brush border membrane.
    Zelikovic I, Budreau-Patters A.
    Mol Genet Metab; 1999 Jul 15; 67(3):236-47. PubMed ID: 10381331
    [Abstract] [Full Text] [Related]

  • 11. Sodium/proton antiport in brush-border-membrane vesicles isolated from rat small intestine and kidney.
    Murer H, Hopfer U, Kinne R.
    Biochem J; 1976 Mar 15; 154(3):597-604. PubMed ID: 942389
    [Abstract] [Full Text] [Related]

  • 12. Polarity of proximal tubular epithelial cells in relation to transepithelial transport.
    Murer H, Evers J, Kinne R.
    Curr Probl Clin Biochem; 1976 Mar 15; 6():173-89. PubMed ID: 11964
    [Abstract] [Full Text] [Related]

  • 13. Sugar transport by renal plasma membrane vesicles. Characterization of the systems in the brush-border microvilli and basal-lateral plasma membranes.
    Kinne R, Murer H, Kinne-Saffran E, Thees M, Sachs G.
    J Membr Biol; 1975 Mar 15; 21(3-4):375-95. PubMed ID: 1127684
    [Abstract] [Full Text] [Related]

  • 14. A Na+-independent, phloretin-sensitive monosaccharide transport system in isolated intestinal epithelial cells.
    Kimmich GA, Randles J.
    J Membr Biol; 1975 Aug 11; 23(1):57-76. PubMed ID: 1165580
    [Abstract] [Full Text] [Related]

  • 15. Phosphate transport across the basolateral membrane from rat kidney cortex: sodium-dependence?
    Hagenbuch B, Murer H.
    Pflugers Arch; 1986 Aug 11; 407 Suppl 2():S149-55. PubMed ID: 2881247
    [Abstract] [Full Text] [Related]

  • 16. Transepithelial D-glucose and D-fructose transport across the American lobster, Homarus americanus, intestine.
    Obi IE, Sterling KM, Ahearn GA.
    J Exp Biol; 2011 Jul 15; 214(Pt 14):2337-44. PubMed ID: 21697425
    [Abstract] [Full Text] [Related]

  • 17. Demonstration of electrogenic Na+-dependent D-glucose transport in intestinal brush border membranes.
    Murer H, Hopfer U.
    Proc Natl Acad Sci U S A; 1974 Feb 15; 71(2):484-8. PubMed ID: 4521818
    [Abstract] [Full Text] [Related]

  • 18. D-glucose and L-leucine transport by human intestinal brush-border membrane vesicles.
    Harig JM, Barry JA, Rajendran VM, Soergel KH, Ramaswamy K.
    Am J Physiol; 1989 Mar 15; 256(3 Pt 1):G618-23. PubMed ID: 2923218
    [Abstract] [Full Text] [Related]

  • 19. Basolateral glucose transport by intestine of teleost, Oreochromis mossambicus.
    Reshkin SJ, Ahearn GA.
    Am J Physiol; 1987 Mar 15; 252(3 Pt 2):R579-86. PubMed ID: 3030144
    [Abstract] [Full Text] [Related]

  • 20. Isolated membrane vesicles as tools for analysis of epithelial transport.
    Hopfer U.
    Am J Physiol; 1977 Dec 15; 233(6):E445-9. PubMed ID: 596437
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 26.