These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


115 related items for PubMed ID: 1383811

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Clinical symptoms and DNA repair characteristics of xeroderma pigmentosum patients from Germany.
    Thielmann HW, Popanda O, Edler L, Jung EG.
    Cancer Res; 1991 Jul 01; 51(13):3456-70. PubMed ID: 2054785
    [Abstract] [Full Text] [Related]

  • 4. Excision repair in xeroderma pigmentosum group C cells is regulated differently in transformed cells and primary fibroblasts.
    Cleaver JE.
    Biochem Biophys Res Commun; 1988 Oct 14; 156(1):557-62. PubMed ID: 2845984
    [Abstract] [Full Text] [Related]

  • 5. Selective repair of specific chromatin domains in UV-irradiated cells from xeroderma pigmentosum complementation group C.
    Kantor GJ, Barsalou LS, Hanawalt PC.
    Mutat Res; 1990 May 14; 235(3):171-80. PubMed ID: 2342504
    [Abstract] [Full Text] [Related]

  • 6. Sodium butyrate stimulates cellular recovery from UV damage in xeroderma pigmentosum cells belonging to complementation group F.
    Nishigori C, Takebe H.
    Jpn J Cancer Res; 1987 Sep 14; 78(9):932-6. PubMed ID: 3117749
    [Abstract] [Full Text] [Related]

  • 7. The endogenous nuclease sensitivity of repaired DNA in human fibroblasts.
    Player AN, Kantor GJ.
    Mutat Res; 1987 Sep 14; 184(2):169-78. PubMed ID: 3627144
    [Abstract] [Full Text] [Related]

  • 8. DNA repair in the genomic region containing the beta-actin gene in xeroderma pigmentosum complementation group C and normal human cells.
    Barsalou LS, Kantor GJ, Deiss DM, Hall CE.
    Mutat Res; 1994 Jul 14; 315(1):43-54. PubMed ID: 7517010
    [Abstract] [Full Text] [Related]

  • 9. Gene-specific DNA repair in xeroderma pigmentosum complementation groups A, C, D, and F. Relation to cellular survival and clinical features.
    Evans MK, Robbins JH, Ganges MB, Tarone RE, Nairn RS, Bohr VA.
    J Biol Chem; 1993 Mar 05; 268(7):4839-47. PubMed ID: 8444862
    [Abstract] [Full Text] [Related]

  • 10. Construction of a recombinant adenovirus containing the denV gene from bacteriophage T4 which can partially restore the DNA repair deficiency in xeroderma pigmentosum fibroblasts.
    Colicos MA, Haj-Ahmad Y, Valerie K, Henderson EE, Rainbow AJ.
    Carcinogenesis; 1991 Feb 05; 12(2):249-55. PubMed ID: 1704821
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Comparative study of nucleotide excision repair defects between XPD-mutated fibroblasts derived from trichothiodystrophy and xeroderma pigmentosum patients.
    Nishiwaki T, Kobayashi N, Iwamoto T, Yamamoto A, Sugiura S, Liu YC, Sarasin A, Okahashi Y, Hirano M, Ueno S, Mori T.
    DNA Repair (Amst); 2008 Dec 01; 7(12):1990-8. PubMed ID: 18817897
    [Abstract] [Full Text] [Related]

  • 13. Defect in UV-induced unscheduled DNA synthesis in cultured epidermal keratinocytes from xeroderma pigmentosum.
    Kondo S, Satoh Y, Kuroki T.
    Mutat Res; 1987 Jan 01; 183(1):95-101. PubMed ID: 2432425
    [Abstract] [Full Text] [Related]

  • 14. DNA repair in human xeroderma pigmentosum group C cells involves a different distribution of damaged sites in confluent and growing cells.
    Cleaver JE.
    Nucleic Acids Res; 1986 Oct 24; 14(20):8155-65. PubMed ID: 3774554
    [Abstract] [Full Text] [Related]

  • 15. Xeroderma pigmentosum patients belonging to complementation group F and efficient liquid-holding recovery of ultraviolet damage.
    Nishigori C, Fujisawa H, Uyeno K, Kawaguchi T, Takebe H.
    Photodermatol Photoimmunol Photomed; 1991 Aug 24; 8(4):146-50. PubMed ID: 1814424
    [Abstract] [Full Text] [Related]

  • 16. Repair of UV-endonuclease-susceptible sites in the 7 complementation groups of xeroderma pigmentosum A through G.
    Zelle B, Lohman PH.
    Mutat Res; 1979 Sep 24; 62(2):363-8. PubMed ID: 503100
    [Abstract] [Full Text] [Related]

  • 17. DNA strand bias in the repair of the p53 gene in normal human and xeroderma pigmentosum group C fibroblasts.
    Evans MK, Taffe BG, Harris CC, Bohr VA.
    Cancer Res; 1993 Nov 15; 53(22):5377-81. PubMed ID: 8221675
    [Abstract] [Full Text] [Related]

  • 18. Comparative studies of host-cell reactivation, cellular capacity and enhanced reactivation of herpes simplex virus in normal, xeroderma pigmentosum and Cockayne syndrome fibroblasts.
    Ryan DK, Rainbow AJ.
    Mutat Res; 1986 Jul 15; 166(1):99-111. PubMed ID: 3014327
    [Abstract] [Full Text] [Related]

  • 19. Cytotoxicity of carcinogenic aromatic amides in normal and xeroderma pigmentosum fibroblasts with different DNA repair capabilities.
    Maher VM, Birch N, Otto JR, MacCormick JJ.
    J Natl Cancer Inst; 1975 Jun 15; 54(6):1287-94. PubMed ID: 1133846
    [Abstract] [Full Text] [Related]

  • 20. UV-enhanced reactivation of a UV-damaged reporter gene suggests transcription-coupled repair is UV-inducible in human cells.
    Francis MA, Rainbow AJ.
    Carcinogenesis; 1999 Jan 15; 20(1):19-26. PubMed ID: 9934845
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.