These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
164 related items for PubMed ID: 1385798
1. Immunosuppressive activity induced by nitric oxide in culture supernatant of activated rat alveolar macrophages. Kawabe T, Isobe KI, Hasegawa Y, Nakashima I, Shimokata K. Immunology; 1992 May; 76(1):72-8. PubMed ID: 1385798 [Abstract] [Full Text] [Related]
2. Nitric oxide production is required for murine resident peritoneal macrophages to suppress mitogen-stimulated T cell proliferation. Role of IFN-gamma in the induction of the nitric oxide-synthesizing pathway. Albina JE, Abate JA, Henry WL. J Immunol; 1991 Jul 01; 147(1):144-8. PubMed ID: 1904899 [Abstract] [Full Text] [Related]
3. Molecular basis of "suppressor" macrophages. Arginine metabolism via the nitric oxide synthetase pathway. Mills CD. J Immunol; 1991 Apr 15; 146(8):2719-23. PubMed ID: 1707918 [Abstract] [Full Text] [Related]
4. Characterization of the immunosuppressive effects of nitric oxide in graft vs host disease. Hoffman RA, Langrehr JM, Wren SM, Dull KE, Ildstad ST, McCarthy SA, Simmons RL. J Immunol; 1993 Aug 01; 151(3):1508-18. PubMed ID: 8335943 [Abstract] [Full Text] [Related]
5. Nitric oxide production by splenic macrophages is not responsible for T cell suppression during acute infection with lactate dehydrogenase-elevating virus. Rowland RR, Butz EA, Plagemann PG. J Immunol; 1994 Jun 15; 152(12):5785-95. PubMed ID: 8207208 [Abstract] [Full Text] [Related]
6. Effect of ozone exposure on alveolar macrophage-mediated immunosuppressive activity in rats. Koike E, Kobayashi T, Nelson DJ, McWilliam AS, Holt PG. Toxicol Sci; 1998 Feb 15; 41(2):217-23. PubMed ID: 9520358 [Abstract] [Full Text] [Related]
7. Alveolar macrophages. VI. Regulation of alveolar macrophage-mediated suppression of lymphocyte proliferation by a putative T cell. Warner LA, Holt PG, Mayrhofer G. Immunology; 1981 Jan 15; 42(1):137-47. PubMed ID: 6970172 [Abstract] [Full Text] [Related]
8. Cytokine and nitric oxide regulation of the immunosuppression in Trypanosoma cruzi infection. Abrahamsohn IA, Coffman RL. J Immunol; 1995 Oct 15; 155(8):3955-63. PubMed ID: 7561103 [Abstract] [Full Text] [Related]
9. Immunoregulatory functions of BCG-elicited alveolar macrophages in cell-mediated immune responses. Igietseme JU, Herscowitz HB. Reg Immunol; 1988 Oct 15; 1(3):172-81. PubMed ID: 3079425 [Abstract] [Full Text] [Related]
10. Roles of reactive nitrogen intermediates and transforming growth factor-beta produced by immunosuppressive macrophages in the expression of suppressor activity against T cell proliferation induced by TCR stimulation. Shimizu T, Cai S, Tomioka H. Cytokine; 2005 Apr 07; 30(1):7-13. PubMed ID: 15784407 [Abstract] [Full Text] [Related]
11. Macrophage-derived nitric oxide is involved in the depressed concanavalin A responsiveness of splenic lymphocytes from rats administered morphine in vivo. Fecho K, Maslonek KA, Coussons-Read ME, Dykstra LA, Lysle DT. J Immunol; 1994 Jun 15; 152(12):5845-52. PubMed ID: 8207211 [Abstract] [Full Text] [Related]
12. Inhibition of lymphoproliferative responses by SK&F 105685, a novel anti-arthritic agent. Kaplan JM, Badger AM, Ruggieri EV, Olivera DL, Newman-Tarr T, Bugelski PJ. J Clin Lab Immunol; 1991 Dec 15; 36(4):49-58. PubMed ID: 1668843 [Abstract] [Full Text] [Related]
13. The accessory cell function of human alveolar macrophages in specific T cell proliferation. Toews GB, Vial WC, Dunn MM, Guzzetta P, Nunez G, Stastny P, Lipscomb MF. J Immunol; 1984 Jan 15; 132(1):181-6. PubMed ID: 6228577 [Abstract] [Full Text] [Related]
14. Rat splenocytes inhibit antigen-specific lymphocyte proliferation through a reactive nitrogen intermediate (RNI)-dependent mechanism and exhibit increased RNI production in response to IFN-gamma. Stein CS, Strejan GH. Cell Immunol; 1993 Sep 15; 150(2):281-97. PubMed ID: 8370073 [Abstract] [Full Text] [Related]
15. The effects of nitric oxide on chondrocytes and lymphocytes. Kondo S, Ishiguro N, Iwata H, Nakashima I, Isobe K. Biochem Biophys Res Commun; 1993 Dec 30; 197(3):1431-7. PubMed ID: 8280161 [Abstract] [Full Text] [Related]
16. Synergism between tumor necrosis factor-alpha and interferon-gamma on macrophage activation for the killing of intracellular Trypanosoma cruzi through a nitric oxide-dependent mechanism. Muñoz-Fernández MA, Fernández MA, Fresno M. Eur J Immunol; 1992 Feb 30; 22(2):301-7. PubMed ID: 1537373 [Abstract] [Full Text] [Related]
17. Human alveolar macrophage suppression of lymphocyte proliferation. Accessory characteristics for the generation and functional expression of con A-induced suppressor cells. Ettensohn DB, Lalor PA, Roberts NJ. Am Rev Respir Dis; 1988 Apr 30; 137(4):765-73. PubMed ID: 2965537 [Abstract] [Full Text] [Related]
18. Sca1(+)/Mac1(+) nitric oxide-producing cells in the spleens of recipients early following bone marrow transplant suppress T cell responses in vitro. Johnson BD, Hanke CA, Becker EE, Truitt RL. Cell Immunol; 1998 Nov 01; 189(2):149-59. PubMed ID: 9790729 [Abstract] [Full Text] [Related]
19. Cytokine modulation of the immunosuppressive phenotype of pulmonary alveolar macrophage populations. Bilyk N, Holt PG. Immunology; 1995 Oct 01; 86(2):231-7. PubMed ID: 7490123 [Abstract] [Full Text] [Related]
20. Macrophages in mice acutely infected with lymphocytic choriomeningitis virus are primed for nitric oxide synthesis. Butz EA, Hostager BS, Southern PJ. Microb Pathog; 1994 Apr 01; 16(4):283-95. PubMed ID: 7968457 [Abstract] [Full Text] [Related] Page: [Next] [New Search]