These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


155 related items for PubMed ID: 1386211

  • 1. Comparative acid tolerances and inhibitor sensitivities of isolated F-ATPases of oral lactic acid bacteria.
    Sturr MG, Marquis RE.
    Appl Environ Microbiol; 1992 Jul; 58(7):2287-91. PubMed ID: 1386211
    [Abstract] [Full Text] [Related]

  • 2. Fluoride inhibition of proton-translocating ATPases of oral bacteria.
    Sutton SV, Bender GR, Marquis RE.
    Infect Immun; 1987 Nov; 55(11):2597-603. PubMed ID: 2889674
    [Abstract] [Full Text] [Related]

  • 3. Membrane-associated and solubilized ATPases of Streptococcus mutans and Streptococcus sanguis.
    Sutton SV, Marquis RE.
    J Dent Res; 1987 Jun; 66(6):1095-8. PubMed ID: 2887601
    [Abstract] [Full Text] [Related]

  • 4. Acid tolerance, proton permeabilities, and membrane ATPases of oral streptococci.
    Bender GR, Sutton SV, Marquis RE.
    Infect Immun; 1986 Aug; 53(2):331-8. PubMed ID: 3015800
    [Abstract] [Full Text] [Related]

  • 5. Inhibition of proton-translocating ATPases of Streptococcus mutans and Lactobacillus casei by fluoride and aluminum.
    Sturr MG, Marquis RE.
    Arch Microbiol; 1990 Aug; 155(1):22-7. PubMed ID: 2150306
    [Abstract] [Full Text] [Related]

  • 6. Genetic and biochemical characterization of the F-ATPase operon from Streptococcus sanguis 10904.
    Kuhnert WL, Quivey RG.
    J Bacteriol; 2003 Mar; 185(5):1525-33. PubMed ID: 12591869
    [Abstract] [Full Text] [Related]

  • 7. Diminished acid tolerance of plaque bacteria caused by fluoride.
    Marquis RE.
    J Dent Res; 1990 Feb; 69 Spec No():672-5; discussion 682-3. PubMed ID: 2138181
    [Abstract] [Full Text] [Related]

  • 8. Lactate dehydrogenase from Streptococcus mutans: purification, characterization, and crossed antigenicity with lactate dehydrogenases from Lactobacillus casei, Actinomyces viscosus, and Streptococcus sanguis.
    Sommer P, Klein JP, Schöller M, Frank RM.
    Infect Immun; 1985 Feb; 47(2):489-95. PubMed ID: 3917978
    [Abstract] [Full Text] [Related]

  • 9. The effect of lowering the pH on the composition and metabolism of a community of nine oral bacteria grown in a chemostat.
    McDermid AS, McKee AS, Ellwood DC, Marsh PD.
    J Gen Microbiol; 1986 May; 132(5):1205-14. PubMed ID: 3095488
    [Abstract] [Full Text] [Related]

  • 10. Effects of acidification on growth and glycolysis of Streptococcus sanguis and Streptococcus mutans.
    Takahashi N, Horiuchi M, Yamada T.
    Oral Microbiol Immunol; 1997 Apr; 12(2):72-6. PubMed ID: 9227129
    [Abstract] [Full Text] [Related]

  • 11. Effects of organic acid anions on growth, glycolysis, and intracellular pH of oral streptococci.
    Dashper SG, Reynolds EC.
    J Dent Res; 2000 Jan; 79(1):90-6. PubMed ID: 10690666
    [Abstract] [Full Text] [Related]

  • 12. Anaerobic killing of oral streptococci by reduced, transition metal cations.
    Dunning JC, Ma Y, Marquis RE.
    Appl Environ Microbiol; 1998 Jan; 64(1):27-33. PubMed ID: 9435058
    [Abstract] [Full Text] [Related]

  • 13. Interrelationships between lactobacilli and streptococci in plaque formation on a tooth in an artificial mouth.
    Russell C, Ahmed FI.
    J Appl Bacteriol; 1978 Dec; 45(3):373-82. PubMed ID: 32164
    [No Abstract] [Full Text] [Related]

  • 14. Biochemical change exhibited by oral streptococci resulting from laboratory subculturing.
    Cvitkovitch DG, Hamilton IR.
    Oral Microbiol Immunol; 1994 Aug; 9(4):209-17. PubMed ID: 7478760
    [Abstract] [Full Text] [Related]

  • 15. Triclosan inhibition of membrane enzymes and glycolysis of Streptococcus mutans in suspensions and biofilms.
    Phan TN, Marquis RE.
    Can J Microbiol; 2006 Oct; 52(10):977-83. PubMed ID: 17110966
    [Abstract] [Full Text] [Related]

  • 16. Purification and reconstitution into proteoliposomes of the F1F0 ATP synthase from the obligately anaerobic gram-positive bacterium Clostridium thermoautotrophicum.
    Das A, Ivey DM, Ljungdahl LG.
    J Bacteriol; 1997 Mar; 179(5):1714-20. PubMed ID: 9045833
    [Abstract] [Full Text] [Related]

  • 17. Effects of three different infant dentifrices on biofilms and oral microorganisms.
    Modesto A, Lima KC, de Uzeda M.
    J Clin Pediatr Dent; 2000 Mar; 24(3):237-43. PubMed ID: 11314149
    [Abstract] [Full Text] [Related]

  • 18. Role of the arginine deiminase system in protecting oral bacteria and an enzymatic basis for acid tolerance.
    Casiano-Colón A, Marquis RE.
    Appl Environ Microbiol; 1988 Jun; 54(6):1318-24. PubMed ID: 2843090
    [Abstract] [Full Text] [Related]

  • 19. Characterization of the Na+-stimulated ATPase of Propionigenium modestum as an enzyme of the F1F0 type.
    Laubinger W, Dimroth P.
    Eur J Biochem; 1987 Oct 15; 168(2):475-80. PubMed ID: 2889596
    [Abstract] [Full Text] [Related]

  • 20. Role of F1F0-ATPase in the growth of streptococcus mutans GS5.
    Suzuki T, Tagami J, Hanada N.
    J Appl Microbiol; 2000 Apr 15; 88(4):555-62. PubMed ID: 10792513
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.