These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Transcription of the Bacillus subtilis spoIIA locus. Wu JJ, Piggot PJ, Tatti KM, Moran CP. Gene; 1991 May 15; 101(1):113-6. PubMed ID: 1905664 [Abstract] [Full Text] [Related]
3. The dacF-spoIIA operon of Bacillus subtilis, encoding sigma F, is autoregulated. Schuch R, Piggot PJ. J Bacteriol; 1994 Jul 15; 176(13):4104-10. PubMed ID: 8021191 [Abstract] [Full Text] [Related]
4. Control of developmental transcription factor sigma F by sporulation regulatory proteins SpoIIAA and SpoIIAB in Bacillus subtilis. Schmidt R, Margolis P, Duncan L, Coppolecchia R, Moran CP, Losick R. Proc Natl Acad Sci U S A; 1990 Dec 15; 87(23):9221-5. PubMed ID: 2123551 [Abstract] [Full Text] [Related]
7. The Bacillus subtilis response regulator Spo0A stimulates transcription of the spoIIG operon through modification of RNA polymerase promoter complexes. Bird TH, Grimsley JK, Hoch JA, Spiegelman GB. J Mol Biol; 1996 Mar 01; 256(3):436-48. PubMed ID: 8604129 [Abstract] [Full Text] [Related]
8. Spo0A binds to a promoter used by sigma A RNA polymerase during sporulation in Bacillus subtilis. Satola S, Kirchman PA, Moran CP. Proc Natl Acad Sci U S A; 1991 May 15; 88(10):4533-7. PubMed ID: 1903544 [Abstract] [Full Text] [Related]
9. The spoIIIA operon of Bacillus subtilis defines a new temporal class of mother-cell-specific sporulation genes under the control of the sigma E form of RNA polymerase. Illing N, Errington J. Mol Microbiol; 1991 Aug 15; 5(8):1927-40. PubMed ID: 1766372 [Abstract] [Full Text] [Related]
11. Genetic evidence that RNA polymerase associated with sigma A factor uses a sporulation-specific promoter in Bacillus subtilis. Kenney TJ, York K, Youngman P, Moran CP. Proc Natl Acad Sci U S A; 1989 Dec 15; 86(23):9109-13. PubMed ID: 2512576 [Abstract] [Full Text] [Related]
15. Similar organization of the sigB and spoIIA operons encoding alternate sigma factors of Bacillus subtilis RNA polymerase. Kalman S, Duncan ML, Thomas SM, Price CW. J Bacteriol; 1990 Oct 15; 172(10):5575-85. PubMed ID: 2170324 [Abstract] [Full Text] [Related]
16. Analysis of the upstream activating sequence and site of carbon and nitrogen source repression in the promoter of an early-induced sporulation gene of Bacillus subtilis. Frisby D, Zuber P. J Bacteriol; 1991 Dec 15; 173(23):7557-64. PubMed ID: 1938951 [Abstract] [Full Text] [Related]
17. Molecular and phenotypic characterization of promoter-proximal mutations in the spoIIA locus of Bacillus subtilis. Challoner-Courtney IJ, Yudkin MD. J Bacteriol; 1993 Sep 15; 175(17):5636-41. PubMed ID: 8366048 [Abstract] [Full Text] [Related]
18. Postexponential regulation of sin operon expression in Bacillus subtilis. Shafikhani SH, Mandic-Mulec I, Strauch MA, Smith I, Leighton T. J Bacteriol; 2002 Jan 15; 184(2):564-71. PubMed ID: 11751836 [Abstract] [Full Text] [Related]
19. Isolation of Bacillus subtilis genes transcribed in vitro and in vivo by a major sporulation-induced, DNA-dependent RNA polymerase. Ray GL, Haldenwang WG. J Bacteriol; 1986 May 15; 166(2):472-8. PubMed ID: 3009401 [Abstract] [Full Text] [Related]
20. Characterization of csh203::Tn917lac, a mutation in Bacillus subtilis that makes the sporulation sigma factor sigma-H essential for normal vegetative growth. Hicks KA, Grossman AD. J Bacteriol; 1995 Jul 15; 177(13):3736-42. PubMed ID: 7601838 [Abstract] [Full Text] [Related] Page: [Next] [New Search]