These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
108 related items for PubMed ID: 1397275
21. Action pattern and subsite mapping of Bacillus licheniformis alpha-amylase (BLA) with modified maltooligosaccharide substrates. Kandra L, Gyémánt G, Remenyik J, Hovánszki G, Lipták A. FEBS Lett; 2002 May 08; 518(1-3):79-82. PubMed ID: 11997021 [Abstract] [Full Text] [Related]
22. The roles of histidine residues at the starch-binding site in streptococcal-binding activities of human salivary amylase. Tseng CC, Miyamoto M, Ramalingam K, Hemavathy KC, Levine MJ, Ramasubbu N. Arch Oral Biol; 1999 Feb 08; 44(2):119-27. PubMed ID: 10206330 [Abstract] [Full Text] [Related]
30. Experimental evidence for a 9-binding subsite of Bacillus licheniformis thermostable α-amylase. Tran PL, Lee JS, Park KH. FEBS Lett; 2014 Feb 14; 588(4):620-4. PubMed ID: 24440349 [Abstract] [Full Text] [Related]
31. Models for the action of barley alpha-amylase isozymes on linear substrates. MacGregor EA, MacGregor AW, Macri LJ, Morgan JE. Carbohydr Res; 1994 May 05; 257(2):249-68. PubMed ID: 8013008 [Abstract] [Full Text] [Related]
32. Two secondary carbohydrate binding sites on the surface of barley alpha-amylase 1 have distinct functions and display synergy in hydrolysis of starch granules. Nielsen MM, Bozonnet S, Seo ES, Mótyán JA, Andersen JM, Dilokpimol A, Abou Hachem M, Gyémánt G, Naested H, Kandra L, Sigurskjold BW, Svensson B. Biochemistry; 2009 Aug 18; 48(32):7686-97. PubMed ID: 19606835 [Abstract] [Full Text] [Related]
33. Characterization of a Novel Maltose-Forming α-Amylase from Lactobacillus plantarum subsp. plantarum ST-III. Jeon HY, Kim NR, Lee HW, Choi HJ, Choung WJ, Koo YS, Ko DS, Shim JH. J Agric Food Chem; 2016 Mar 23; 64(11):2307-14. PubMed ID: 26919577 [Abstract] [Full Text] [Related]
35. Kinetics and energetics of ligand binding determined by microcalorimetry: insights into active site mobility in a psychrophilic alpha-amylase. D'Amico S, Sohier JS, Feller G. J Mol Biol; 2006 May 19; 358(5):1296-304. PubMed ID: 16580683 [Abstract] [Full Text] [Related]
36. A study of the mechanism of action of Taka-amylase A1 on linear oligosaccharides by product analysis and computer simulation. Suganuma T, Matsuno R, Ohnishi M, Hiromi K. J Biochem; 1978 Aug 19; 84(2):293-316. PubMed ID: 308947 [Abstract] [Full Text] [Related]
37. The mechanism of salivary amylase hydrolysis: role of residues at subsite S2'. Mishra PJ, Ragunath C, Ramasubbu N. Biochem Biophys Res Commun; 2002 Mar 29; 292(2):468-73. PubMed ID: 11906186 [Abstract] [Full Text] [Related]
39. The 'pair of sugar tongs' site on the non-catalytic domain C of barley alpha-amylase participates in substrate binding and activity. Bozonnet S, Jensen MT, Nielsen MM, Aghajari N, Jensen MH, Kramhøft B, Willemoës M, Tranier S, Haser R, Svensson B. FEBS J; 2007 Oct 29; 274(19):5055-67. PubMed ID: 17803687 [Abstract] [Full Text] [Related]
40. Substrate-dependent shift of optimum pH in porcine pancreatic alpha-amylase-catalyzed reactions. Ishikawa K, Matsui I, Honda K, Nakatani H. Biochemistry; 1990 Jul 31; 29(30):7119-23. PubMed ID: 2223766 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]