These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


263 related items for PubMed ID: 1400648

  • 1. Effect of nitric oxide blockade by NG-nitro-L-arginine on cerebral blood flow response to changes in carbon dioxide tension.
    Wang Q, Paulson OB, Lassen NA.
    J Cereb Blood Flow Metab; 1992 Nov; 12(6):947-53. PubMed ID: 1400648
    [Abstract] [Full Text] [Related]

  • 2. Comparison of the effects of NG-nitro-L-arginine and indomethacin on the hypercapnic cerebral blood flow increase in rats.
    Wang Q, Pelligrino DA, Paulson OB, Lassen NA.
    Brain Res; 1994 Apr 04; 641(2):257-64. PubMed ID: 8012827
    [Abstract] [Full Text] [Related]

  • 3. Role of nitric oxide in regulating cerebrocortical oxygen consumption and blood flow during hypercapnia.
    Horvath I, Sandor NT, Ruttner Z, McLaughlin AC.
    J Cereb Blood Flow Metab; 1994 May 04; 14(3):503-9. PubMed ID: 8163593
    [Abstract] [Full Text] [Related]

  • 4. Blockade of nitric oxide synthesis in rats strongly attenuates the CBF response to extracellular acidosis.
    Niwa K, Lindauer U, Villringer A, Dirnagl U.
    J Cereb Blood Flow Metab; 1993 May 04; 13(3):535-9. PubMed ID: 8478412
    [Abstract] [Full Text] [Related]

  • 5. Role of the endogenous nitric oxide in the vasodilatory tone and CO2 responsiveness of the rostral ventrolateral medulla microcirculation in the rat.
    Wołk R, Nowicki D, Siemińska J, Trzebski A.
    J Physiol Pharmacol; 1995 Jun 04; 46(2):127-39. PubMed ID: 7670122
    [Abstract] [Full Text] [Related]

  • 6. Nitric oxide-dependent and -independent components of cerebrovasodilation elicited by hypercapnia.
    Iadecola C, Zhang F.
    Am J Physiol; 1994 Feb 04; 266(2 Pt 2):R546-52. PubMed ID: 7511352
    [Abstract] [Full Text] [Related]

  • 7. Major role of nitric oxide in the mediation of regional CO2 responsiveness of the cerebral and spinal cord vessels of the cat.
    Sandor P, Komjati K, Reivich M, Nyary I.
    J Cereb Blood Flow Metab; 1994 Jan 04; 14(1):49-58. PubMed ID: 7505282
    [Abstract] [Full Text] [Related]

  • 8. Widespread attenuation of the cerebrovascular reactivity to hypercapnia following inhibition of nitric oxide synthase in the conscious rat.
    Bonvento G, Seylaz J, Lacombe P.
    J Cereb Blood Flow Metab; 1994 Sep 04; 14(5):699-703. PubMed ID: 7520450
    [Abstract] [Full Text] [Related]

  • 9. Nitric oxide mediation of chemoregulation but not autoregulation of cerebral blood flow in primates.
    Thompson BG, Pluta RM, Girton ME, Oldfield EH.
    J Neurosurg; 1996 Jan 04; 84(1):71-8. PubMed ID: 8613839
    [Abstract] [Full Text] [Related]

  • 10. Inhibition of nitric oxide synthesis: effects on cerebral blood flow and glucose utilisation in the rat.
    Macrae IM, Dawson DA, Norrie JD, McCulloch J.
    J Cereb Blood Flow Metab; 1993 Nov 04; 13(6):985-92. PubMed ID: 7691855
    [Abstract] [Full Text] [Related]

  • 11. Cerebral blood flow changes during cortical spreading depression are not altered by inhibition of nitric oxide synthesis.
    Zhang ZG, Chopp M, Maynard KI, Moskowitz MA.
    J Cereb Blood Flow Metab; 1994 Nov 04; 14(6):939-43. PubMed ID: 7523432
    [Abstract] [Full Text] [Related]

  • 12. Effects of hypertonic arginine on cerebral blood flow and intracranial pressure after traumatic brain injury combined with hemorrhagic hypotension.
    Prough DS, Kramer GC, Uchida T, Stephenson RT, Hellmich HL, Dewitt DS.
    Shock; 2006 Sep 04; 26(3):290-5. PubMed ID: 16912655
    [Abstract] [Full Text] [Related]

  • 13. Nitric oxide synthase is critical in mediating basal forebrain regulation of cortical cerebral circulation.
    Raszkiewicz JL, Linville DG, Kerwin JF, Wagenaar F, Arneric SP.
    J Neurosci Res; 1992 Sep 04; 33(1):129-35. PubMed ID: 1280688
    [Abstract] [Full Text] [Related]

  • 14. Nitric oxide scavenging by hemoglobin or nitric oxide synthase inhibition by N-nitro-L-arginine induces cortical spreading ischemia when K+ is increased in the subarachnoid space.
    Dreier JP, Körner K, Ebert N, Görner A, Rubin I, Back T, Lindauer U, Wolf T, Villringer A, Einhäupl KM, Lauritzen M, Dirnagl U.
    J Cereb Blood Flow Metab; 1998 Sep 04; 18(9):978-90. PubMed ID: 9740101
    [Abstract] [Full Text] [Related]

  • 15. Experimental pneumococcal meningitis: cerebrovascular alterations, brain edema, and meningeal inflammation are linked to the production of nitric oxide.
    Koedel U, Bernatowicz A, Paul R, Frei K, Fontana A, Pfister HW.
    Ann Neurol; 1995 Mar 04; 37(3):313-23. PubMed ID: 7535035
    [Abstract] [Full Text] [Related]

  • 16. Modification of the hepatic hemodynamic response to acute changes in PaCO2 by nitric oxide synthase inhibition in rabbits.
    Losser MR, Lenfant F, Payen D.
    Anesth Analg; 2010 Mar 01; 110(3):845-51. PubMed ID: 20008913
    [Abstract] [Full Text] [Related]

  • 17. Brain luxury perfusion during cardiopulmonary bypass in humans. A study of the cerebral blood flow response to changes in CO2, O2, and blood pressure.
    Henriksen L.
    J Cereb Blood Flow Metab; 1986 Jun 01; 6(3):366-78. PubMed ID: 3086331
    [Abstract] [Full Text] [Related]

  • 18. L-arginine-induced regional cerebral blood flow increase is abolished after transient focal cerebral ischemia in the rat.
    Sporer B, Martens KH, Koedel U, Haberl RL.
    J Cereb Blood Flow Metab; 1997 Oct 01; 17(10):1074-80. PubMed ID: 9346432
    [Abstract] [Full Text] [Related]

  • 19. L-arginine infusion increases basal but not activated cerebral blood flow in humans.
    Reutens DC, McHugh MD, Toussaint PJ, Evans AC, Gjedde A, Meyer E, Stewart DJ.
    J Cereb Blood Flow Metab; 1997 Mar 01; 17(3):309-15. PubMed ID: 9119904
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.