These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Insight into mechanisms of reduced orthostatic performance after exposure to microgravity: comparison of ground-based and space flight data. Convertino VA. J Gravit Physiol; 1998 Jul; 5(1):P85-8. PubMed ID: 11542376 [Abstract] [Full Text] [Related]
3. Consequences of cardiovascular adaptation to spaceflight: implications for the use of pharmacological countermeasures. Convertino VA. Gravit Space Biol Bull; 2005 Jun; 18(2):59-69. PubMed ID: 16038093 [Abstract] [Full Text] [Related]
8. Cardiovascular adaptation during simulated microgravity: lower body negative pressure to counter orthostatic hypotension. Güell A, Braak L, Le Traon AP, Gharib C. Aviat Space Environ Med; 1991 Apr; 62(4):331-5. PubMed ID: 2031636 [Abstract] [Full Text] [Related]
14. The physical price of a ticket into space. Hawkey A. J Br Interplanet Soc; 2003 Jul; 56(5-6):152-9. PubMed ID: 14552355 [Abstract] [Full Text] [Related]
16. [Effects of adaptive changes of vestibular system on cardiovascular regulation and orthostatic tolerance]. Wang LJ, Liu ZQ, He M, Ren W. Space Med Med Eng (Beijing); 2001 Jun; 14(3):225-9. PubMed ID: 11892740 [Abstract] [Full Text] [Related]
18. Effects of Spaceflight on Cardiovascular Physiology and Health. Shen M, Frishman WH. Cardiol Rev; 2019 Jun; 27(3):122-126. PubMed ID: 30365406 [Abstract] [Full Text] [Related]
19. [The features of adaptation and disadaptation of the human cardiovascular system in the space flight conditions]. Kotovskaia AR, Fomina GA. Fiziol Cheloveka; 2010 Jun; 36(2):78-86. PubMed ID: 20432695 [Abstract] [Full Text] [Related]