These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Relationships among cerebral perfusion pressure, autoregulation, and transcranial Doppler waveform: a modeling study. Ursino M, Giulioni M, Lodi CA. J Neurosurg; 1998 Aug; 89(2):255-66. PubMed ID: 9688121 [Abstract] [Full Text] [Related]
3. The hyperaemic response to a transient reduction in cerebral perfusion pressure. A modelling study. Czosnyka M, Pickard J, Whitehouse H, Piechnik S. Acta Neurochir (Wien); 1992 Aug; 115(3-4):90-7. PubMed ID: 1605090 [Abstract] [Full Text] [Related]
4. Continuous intracranial multimodality monitoring comparing local cerebral blood flow, cerebral perfusion pressure, and microvascular resistance. Miller JI, Chou MW, Capocelli A, Bolognese P, Pan J, Milhorat TH. Acta Neurochir Suppl; 1998 Aug; 71():82-4. PubMed ID: 9779151 [Abstract] [Full Text] [Related]
5. Testing of cerebral autoregulation in head injury by waveform analysis of blood flow velocity and cerebral perfusion pressure. Czosnyka M, Guazzo E, Iyer V, Kirkpatrick P, Smielewski P, Whitehouse H, Pickard JD. Acta Neurochir Suppl (Wien); 1994 Aug; 60():468-71. PubMed ID: 7976622 [Abstract] [Full Text] [Related]
6. Increase in transcranial Doppler pulsatility index does not indicate the lower limit of cerebral autoregulation. Richards HK, Czosnyka M, Whitehouse H, Pickard JD. Acta Neurochir Suppl; 1998 Aug; 71():229-32. PubMed ID: 9779192 [Abstract] [Full Text] [Related]
7. Pressure autoregulation monitoring and cerebral perfusion pressure target recommendation in patients with severe traumatic brain injury based on minute-by-minute monitoring data. Depreitere B, Güiza F, Van den Berghe G, Schuhmann MU, Maier G, Piper I, Meyfroidt G. J Neurosurg; 2014 Jun; 120(6):1451-7. PubMed ID: 24745709 [Abstract] [Full Text] [Related]
8. Continuous assessment of cerebral autoregulation--clinical verification of the method in head injured patients. Czosnyka M, Smielewski P, Piechnik S, Schmidt EA, Seeley H, al-Rawi P, Matta BF, Kirkpatrick PJ, Pickard JD. Acta Neurochir Suppl; 2000 Jun; 76():483-4. PubMed ID: 11450074 [Abstract] [Full Text] [Related]
10. Cerebral blood flow autoregulation following subarachnoid hemorrhage in rats: chronic vasospasm shifts the upper and lower limits of the autoregulatory range toward higher blood pressures. Yamamoto S, Nishizawa S, Tsukada H, Kakiuchi T, Yokoyama T, Ryu H, Uemura K. Brain Res; 1998 Jan 26; 782(1-2):194-201. PubMed ID: 9519263 [Abstract] [Full Text] [Related]
11. Cessation of diastolic cerebral blood flow velocity: the role of critical closing pressure. Varsos GV, Richards HK, Kasprowicz M, Reinhard M, Smielewski P, Brady KM, Pickard JD, Czosnyka M. Neurocrit Care; 2014 Feb 26; 20(1):40-8. PubMed ID: 24248737 [Abstract] [Full Text] [Related]
13. Hemodynamic effect of cerebral vasospasm in humans: a modeling study. Lodi CA, Ursino M. Ann Biomed Eng; 1999 Feb 26; 27(2):257-73. PubMed ID: 10199702 [Abstract] [Full Text] [Related]
14. Static autoregulation is intact in majority of patients with severe traumatic brain injury. Peterson E, Chesnut RM. J Trauma; 2009 Nov 26; 67(5):944-9. PubMed ID: 19901652 [Abstract] [Full Text] [Related]
15. Transcranial Doppler ultrasound studies of cerebral autoregulation and subarachnoid hemorrhage in the rabbit. Nelson RJ, Perry S, Hames TK, Pickard JD. J Neurosurg; 1990 Oct 26; 73(4):601-10. PubMed ID: 2118949 [Abstract] [Full Text] [Related]
16. Failure of cerebral autoregulation in an experimental diffuse brain injury model. Prat R, Markiv V, Dujovny M, Misra M. Acta Neurochir Suppl; 1998 Oct 26; 71():123-6. PubMed ID: 9779163 [Abstract] [Full Text] [Related]
18. Vasomotion, regional cerebral blood flow and intracranial pressure after induced subarachnoid haemorrhage in rats. Ebel H, Rust DS, Leschinger A, Ehresmann N, Kranz A, Hoffmann O, Böker DK. Zentralbl Neurochir; 1996 Apr 26; 57(3):150-5. PubMed ID: 8794547 [Abstract] [Full Text] [Related]
19. Transcranial Doppler and cortical microcirculation at increased intracranial pressure and during the Cushing response: an experimental study on rabbits. Ungersböck K, Tenckhoff D, Heimann A, Wagner W, Kempski OS. Neurosurgery; 1995 Jan 26; 36(1):147-56; discussion 156-7. PubMed ID: 7708151 [Abstract] [Full Text] [Related]
20. [Behavior of cerebral blood flow velocity in conventional ventilation and superimposed high frequency jet ventilation]. Schragl E, Pfisterer W, Reinprecht A, Donner A, Aloy A. Anasthesiol Intensivmed Notfallmed Schmerzther; 1995 Aug 26; 30(5):283-9. PubMed ID: 7548479 [Abstract] [Full Text] [Related] Page: [Next] [New Search]