These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


271 related items for PubMed ID: 14080809

  • 1. QUANTITATIVE STUDIES OF THE EFFECT OF ORGANIC SUBSTRATES AND 2,4-DINITROPHENOL ON HETEROTROPHIC CARBON DIOXIDE FIXATION IN HYDROGENOMONAS FACILIS.
    MCFADDEN BA, HOMANN HR.
    J Bacteriol; 1963 Nov; 86(5):971-7. PubMed ID: 14080809
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Heterotrophic carbon metabolism by Beggiatoa alba.
    Strohl WR, Cannon GC, Shively JM, Güde H, Hook LA, Lane CM, Larkin JM.
    J Bacteriol; 1981 Nov; 148(2):572-83. PubMed ID: 6117547
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. INFLUENCE OF PARATHYROID EXTRACT ON THE METABOLISM OF ORGANIC ACIDS BY BONE SLICES.
    COHN DV.
    Endocrinology; 1964 Jan; 74():133-7. PubMed ID: 14114657
    [No Abstract] [Full Text] [Related]

  • 9. INCORPORATION OF C14 FROM CARBON DIOXIDE INTO SUGAR PHOSPHATES, CARBOXYLIC ACIDS, AND AMINO ACIDS BY CLOSTRIDIUM THERMOACETICUM.
    LJUNGDAHL L, WOOD HG.
    J Bacteriol; 1965 Apr; 89(4):1055-64. PubMed ID: 14276095
    [Abstract] [Full Text] [Related]

  • 10. The influence of 2,4-dinitrophenol on the oxidation of acetate and succinate by Escherichia coli.
    GOUCHER CR, WOODSIDE EE, KOCHOLATY W.
    J Bacteriol; 1954 May; 67(5):593-6. PubMed ID: 13163011
    [No Abstract] [Full Text] [Related]

  • 11. Different effects of 2,4-dinitrophenol on rat liver mitochondrial oxidation of various substrates: succinate and glutamate vs 3-hydroxybutyrate and glycerol 3-phosphate.
    Kaminsky YG, Kosenko EA.
    Int J Biochem; 1987 May; 19(1):97-9. PubMed ID: 2883037
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. EXCHANGE TRANSAMINATION AND THE METABOLISM OF GLUTAMATE IN BRAIN.
    BALAZS R, HASLAM J.
    Biochem J; 1965 Jan; 94(1):131-41. PubMed ID: 14342220
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. [THE BIOSYNTHESIS OF POLY-BETA-HYDROXYBUTYRIC ACID BY OXYHYDROGEN GAS BACTERIA. II. USE OF ORGANIC ACIDS].
    GOTTSCHALK G.
    Arch Mikrobiol; 1964 Feb 21; 47():230-5. PubMed ID: 14155084
    [No Abstract] [Full Text] [Related]

  • 17. THE OXIDATION OF GLUTAMATE BY RAT-LIVER MITOCHONDRIA.
    QUAGLIARIELLO E, PAPA S, SACCONE C, PALMIERI F, FRANCAVILLA A.
    Biochem J; 1965 Jun 21; 95(3):742-8. PubMed ID: 14342510
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. CONTROL OF GLUTAMATE OXIDATION IN BRAIN AND LIVER MITOCHONDRIAL SYSTEMS.
    BALAZS R.
    Biochem J; 1965 May 21; 95(2):497-508. PubMed ID: 14340100
    [Abstract] [Full Text] [Related]

  • 20. CYANIDE FORMATION BY CHROMOBACTERIUM VIOLACEUM.
    MICHAELS R, CORPE WA.
    J Bacteriol; 1965 Jan 21; 89(1):106-12. PubMed ID: 14255648
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.