These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


104 related items for PubMed ID: 1408350

  • 1. Purification and properties of sorbitol-6-phosphate dehydrogenase from oral streptococci.
    Svensäter G, Edwardsson S, Kalfas S.
    Oral Microbiol Immunol; 1992 Jun; 7(3):148-54. PubMed ID: 1408350
    [Abstract] [Full Text] [Related]

  • 2. Sorbitol transport and metabolism by oral streptococci.
    Svensäter G.
    Swed Dent J Suppl; 1991 Jun; 79():1-103. PubMed ID: 1896926
    [Abstract] [Full Text] [Related]

  • 3. Polyol metabolism by a caries-conducive Streptococcus: purification and properties of a nicotinamide adenine dinucleotide-dependent mannitol-1-phosphate dehydrogenase.
    Brown AT, Bowles RD.
    Infect Immun; 1977 Apr; 16(1):163-73. PubMed ID: 873604
    [Abstract] [Full Text] [Related]

  • 4. The repressible metabolism of sorbitol (D-glucitol) by intact cells of the oral plaque-forming bacterium Streptococcus mutans.
    Slee AM, Tanzer JM.
    Arch Oral Biol; 1983 Apr; 28(9):839-45. PubMed ID: 6579915
    [Abstract] [Full Text] [Related]

  • 5. Sorbitol transport by Streptococcus sanguis 160.
    Svensater G, Hamilton IR.
    Oral Microbiol Immunol; 1991 Jun; 6(3):160-8. PubMed ID: 1945499
    [Abstract] [Full Text] [Related]

  • 6. Sorbitol inhibition of glucose metabolism by Streptococcus sanguis 160.
    Hamilton IR, Svensater G.
    Oral Microbiol Immunol; 1991 Jun; 6(3):151-9. PubMed ID: 1945498
    [Abstract] [Full Text] [Related]

  • 7. Purification and properties of pyruvate kinase from Streptococcus sanguis and activator specificity of pyruvate kinase from oral streptococci.
    Abbe K, Takahashi S, Yamada T.
    Infect Immun; 1983 Mar; 39(3):1007-14. PubMed ID: 6840832
    [Abstract] [Full Text] [Related]

  • 8. Regulation of glucose metabolism in oral streptococci through independent pathways of glucose 6-phosphate and glucose 1-phosphate formation.
    Keevil CW, Marsh PD, Ellwood DC.
    J Bacteriol; 1984 Feb; 157(2):560-7. PubMed ID: 6693352
    [Abstract] [Full Text] [Related]

  • 9. A comparative study of enzymes involved in glucose phosphorylation in oral streptococci.
    Vadeboncoeur C, Mayrand D, Trahan L.
    J Dent Res; 1982 Jan; 61(1):60-5. PubMed ID: 6948019
    [Abstract] [Full Text] [Related]

  • 10. Rate-limiting steps of glucose and sorbitol metabolism in Streptococcus mutans cells exposed to air.
    Iwami Y, Takahashi-Abbe S, Takahashi N, Abbe K, Yamada T.
    Oral Microbiol Immunol; 2000 Oct; 15(5):325-8. PubMed ID: 11154425
    [Abstract] [Full Text] [Related]

  • 11. Mannitol transport in Streptococcus mutans.
    Maryanski JH, Wittenberger CL.
    J Bacteriol; 1975 Dec; 124(3):1475-81. PubMed ID: 1194241
    [Abstract] [Full Text] [Related]

  • 12. Phosphoenolpyruvate-sugar phosphotransferase transport system of Streptococcus mutans: purification of HPr and enzyme I and determination of their intracellular concentrations by rocket immunoelectrophoresis.
    Thibault L, Vadeboncoeur C.
    Infect Immun; 1985 Dec; 50(3):817-25. PubMed ID: 4066033
    [Abstract] [Full Text] [Related]

  • 13. Regulation of hexitol catabolism in Streptococcus mutans.
    Dills SS, Seno S.
    J Bacteriol; 1983 Feb; 153(2):861-6. PubMed ID: 6401708
    [Abstract] [Full Text] [Related]

  • 14. Membrane-associated and solubilized ATPases of Streptococcus mutans and Streptococcus sanguis.
    Sutton SV, Marquis RE.
    J Dent Res; 1987 Jun; 66(6):1095-8. PubMed ID: 2887601
    [Abstract] [Full Text] [Related]

  • 15. Acid production from Lycasin, maltitol, sorbitol and xylitol by oral streptococci and lactobacilli.
    Edwardsson S, Birkhed D, Mejàre B.
    Acta Odontol Scand; 1977 Jun; 35(5):257-63. PubMed ID: 21508
    [Abstract] [Full Text] [Related]

  • 16. Biochemical change exhibited by oral streptococci resulting from laboratory subculturing.
    Cvitkovitch DG, Hamilton IR.
    Oral Microbiol Immunol; 1994 Aug; 9(4):209-17. PubMed ID: 7478760
    [Abstract] [Full Text] [Related]

  • 17. Effects of oxygen on pyruvate formate-lyase in situ and sugar metabolism of Streptococcus mutans and Streptococcus sanguis.
    Yamada T, Takahashi-Abbe S, Abbe K.
    Infect Immun; 1985 Jan; 47(1):129-34. PubMed ID: 3965391
    [Abstract] [Full Text] [Related]

  • 18. Regulation of ATP-dependent P-(Ser)-HPr formation in Streptococcus mutans and Streptococcus salivarius.
    Thevenot T, Brochu D, Vadeboncoeur C, Hamilton IR.
    J Bacteriol; 1995 May; 177(10):2751-9. PubMed ID: 7751285
    [Abstract] [Full Text] [Related]

  • 19. Acid-induced acid tolerance and acidogenicity of non-mutans streptococci.
    Takahashi N, Yamada T.
    Oral Microbiol Immunol; 1999 Feb; 14(1):43-8. PubMed ID: 10204479
    [Abstract] [Full Text] [Related]

  • 20. Lactate dehydrogenase from Streptococcus mutans: purification, characterization, and crossed antigenicity with lactate dehydrogenases from Lactobacillus casei, Actinomyces viscosus, and Streptococcus sanguis.
    Sommer P, Klein JP, Schöller M, Frank RM.
    Infect Immun; 1985 Feb; 47(2):489-95. PubMed ID: 3917978
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.