These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


104 related items for PubMed ID: 1408350

  • 21. Identification and functional characterization of sorbitol-6-phosphate dehydrogenase protein from rice and structural elucidation by in silico approach.
    Yadav R, Prasad R.
    Planta; 2014 Jul; 240(1):223-38. PubMed ID: 24817585
    [Abstract] [Full Text] [Related]

  • 22. Isolation of a novel protein involved in the transport of fructose by an inducible phosphoenolpyruvate fructose phosphotransferase system in Streptococcus mutans.
    Gauthier L, Mayrand D, Vadeboncoeur C.
    J Bacteriol; 1984 Nov; 160(2):755-63. PubMed ID: 6501220
    [Abstract] [Full Text] [Related]

  • 23. Membrane-bound sugar alcohol dehydrogenase in acetic acid bacteria catalyzes L-ribulose formation and NAD-dependent ribitol dehydrogenase is independent of the oxidative fermentation.
    Adachi O, Fujii Y, Ano Y, Moonmangmee D, Toyama H, Shinagawa E, Theeragool G, Lotong N, Matsushita K.
    Biosci Biotechnol Biochem; 2001 Jan; 65(1):115-25. PubMed ID: 11272814
    [Abstract] [Full Text] [Related]

  • 24. Properties of a phosphocarrier protein (HPr) extracted from intact cells of Streptococcus sanguis.
    Jenkinson HF.
    J Gen Microbiol; 1989 Dec; 135(12):3183-97. PubMed ID: 2636256
    [Abstract] [Full Text] [Related]

  • 25. Mannitol and sorbitol catabolism in Streptococcus mutans.
    Brown AT, Wittenberger CL.
    Arch Oral Biol; 1973 Jan; 18(1):117-26. PubMed ID: 4145128
    [No Abstract] [Full Text] [Related]

  • 26. Anaerobic and aerobic metabolism of sorbitol in Streptococcus sanguis and Streptococcus mitior.
    Svensäter G, Takahashi-Abbe S, Abbe K, Birkhed D, Yamada T, Edwardsson S.
    J Dent Res; 1985 Nov; 64(11):1286-9. PubMed ID: 3867686
    [Abstract] [Full Text] [Related]

  • 27. A IIIman protein is involved in the transport of glucose, mannose and fructose by oral streptococci.
    Bourassa S, Gauthier L, Giguère R, Vadeboncoeur C.
    Oral Microbiol Immunol; 1990 Oct; 5(5):288-97. PubMed ID: 2098704
    [Abstract] [Full Text] [Related]

  • 28. Enolases from fluoride-sensitive and fluoride-resistant streptococci.
    Bunick FJ, Kashket S.
    Infect Immun; 1981 Dec; 34(3):856-63. PubMed ID: 7333671
    [Abstract] [Full Text] [Related]

  • 29. The time-course of acid excretion, levels of fluorescence dependent on cellular nicotinamide adenine nucleotide and glycolytic intermediates of Streptococcus mutans cells exposed and not exposed to air in the presence of glucose and sorbitol.
    Iwami Y, Takahashi-Abbe S, Takahashi N, Yamada T, Kano N, Mayanagi H.
    Oral Microbiol Immunol; 2001 Feb; 16(1):34-9. PubMed ID: 11169137
    [Abstract] [Full Text] [Related]

  • 30. New method for the isolation of Streptococcus mutans and its differentiation from other oral streptococci.
    Linke HA.
    J Clin Microbiol; 1977 Jun; 5(6):604-9. PubMed ID: 560395
    [Abstract] [Full Text] [Related]

  • 31. Structural and functional analysis of Erwinia amylovora SrlD. The first crystal structure of a sorbitol-6-phosphate 2-dehydrogenase.
    Salomone-Stagni M, Bartho JD, Kalita E, Rejzek M, Field RA, Bellini D, Walsh MA, Benini S.
    J Struct Biol; 2018 Aug; 203(2):109-119. PubMed ID: 29605571
    [Abstract] [Full Text] [Related]

  • 32. Pathway for uptake and degradation of X-prolyl tripeptides in Streptococcus mutans VA-29R and Streptococcus sanguis ATCC 10556.
    Cowman RA, Baron SS.
    J Dent Res; 1997 Aug; 76(8):1477-84. PubMed ID: 9240384
    [Abstract] [Full Text] [Related]

  • 33. Molecular cloning and characterization of scrB, the structural gene for the Streptococcus mutans phosphoenolpyruvate-dependent sucrose phosphotransferase system sucrose-6-phosphate hydrolase.
    Lunsford RD, Macrina FL.
    J Bacteriol; 1986 May; 166(2):426-34. PubMed ID: 3009399
    [Abstract] [Full Text] [Related]

  • 34. Effect of growth conditions on levels of components of the phosphoenolpyruvate:sugar phosphotransferase system in Streptococcus mutans and Streptococcus sobrinus grown in continuous culture.
    Vadeboncoeur C, Thibault L, Neron S, Halvorson H, Hamilton IR.
    J Bacteriol; 1987 Dec; 169(12):5686-91. PubMed ID: 3680174
    [Abstract] [Full Text] [Related]

  • 35. Environmental pH as a factor in the competition between strains of the oral streptococci Streptococcus mutans, S. sanguis, and "S. mitior" growing in continuous culture.
    Bowden GH, Hamilton IR.
    Can J Microbiol; 1987 Sep; 33(9):824-7. PubMed ID: 3690424
    [Abstract] [Full Text] [Related]

  • 36. Sorbitol synthesis in transgenic tobacco with apple cDNA encoding NADP-dependent sorbitol-6-phosphate dehydrogenase.
    Tao R, Uratsu SL, Dandekar AM.
    Plant Cell Physiol; 1995 Apr; 36(3):525-32. PubMed ID: 7757342
    [Abstract] [Full Text] [Related]

  • 37. Lactose transport in Streptococcus mutans: isolation and characterization of factor IIIlac, a specific protein component of the phosphoenolpyruvate-lactose phosphotransferase system.
    Vadeboncoeur C, Proulx M.
    Infect Immun; 1984 Oct; 46(1):213-9. PubMed ID: 6480107
    [Abstract] [Full Text] [Related]

  • 38. Strain-related acid production by oral streptococci.
    de Soet JJ, Nyvad B, Kilian M.
    Caries Res; 2000 Oct; 34(6):486-90. PubMed ID: 11093023
    [Abstract] [Full Text] [Related]

  • 39. Heterofermentative glucose metabolism by glucose transport-impaired mutants of oral streptococcal bacteria during growth in batch culture.
    Vadeboncoeur C, Trahan L.
    Arch Oral Biol; 1983 Oct; 28(10):931-7. PubMed ID: 6580849
    [Abstract] [Full Text] [Related]

  • 40. Interaction of saccharin with hexitol metabolism by Streptococcus mutans.
    Best GM, Brown AT.
    Caries Res; 1987 Oct; 21(3):204-14. PubMed ID: 3105887
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 6.