These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
215 related items for PubMed ID: 1409888
1. Quantum yields and kinetics of the photobleaching of hematoporphyrin, Photofrin II, tetra(4-sulfonatophenyl)-porphine and uroporphyrin. Spikes JD. Photochem Photobiol; 1992 Jun; 55(6):797-808. PubMed ID: 1409888 [Abstract] [Full Text] [Related]
2. Photobleaching of mono-L-aspartyl chlorin e6 (NPe6): a candidate sensitizer for the photodynamic therapy of tumors. Spikes JD, Bommer JC. Photochem Photobiol; 1993 Sep; 58(3):346-50. PubMed ID: 8234467 [Abstract] [Full Text] [Related]
3. The photodynamic effects of photofrin II, hematoporphyrin derivative, hematoporphyrin, and tetrasodium-mesotetra(4-sulfonatophenyl)porphine in vitro: clonogenic cell survival and drug uptake studies. West CM, Moore JV. Photochem Photobiol; 1989 Feb; 49(2):169-74. PubMed ID: 2523543 [Abstract] [Full Text] [Related]
4. Singlet oxygen generation by hematoporphyrin IX, uroporphyrin I and hematoporphyrin derivative at 546 nm in phosphate buffer and in the presence of egg phosphatidylcholine liposomes. Blum A, Grossweiner LI. Photochem Photobiol; 1985 Jan; 41(1):27-32. PubMed ID: 3157197 [No Abstract] [Full Text] [Related]
6. Uptake and photodynamic efficiency of hematoporphyrin, hydroxyethylvinyldeuteroporphyrin and hematoporphyrin derivative (Photofrin II): a study with isolated mitochondria. Dellinger M, Vever-Bizet C, Brault D, Moreno G, Salet C. Photochem Photobiol; 1990 Feb; 51(2):185-9. PubMed ID: 2139729 [Abstract] [Full Text] [Related]
7. Time-resolved pH-dependent fluorescence of hydrophilic porphyrins in solution and in cultivated cells. Schneckenburger H, Gschwend MH, Sailer R, Rück A, Strauss WS. J Photochem Photobiol B; 1995 Mar; 27(3):251-5. PubMed ID: 7769536 [Abstract] [Full Text] [Related]
8. Differential role of reactive oxygen intermediates in photofrin-I- and photofrin-II-mediated photoenhancement of lipid peroxidation in epidermal microsomal membranes. Athar M, Mukhtar H, Bickers DR. J Invest Dermatol; 1988 May; 90(5):652-7. PubMed ID: 2834456 [Abstract] [Full Text] [Related]
10. Use of multiple photosensitizers and wavelengths during photodynamic therapy: a new approach to enhance tumor eradication. Nelson JS, Liaw LH, Lahlum RA, Cooper PL, Berns MW. J Natl Cancer Inst; 1990 May 16; 82(10):868-73. PubMed ID: 2139704 [Abstract] [Full Text] [Related]
11. Spectroscopic studies of photobleaching and photoproduct formation of porphyrins used in tumour therapy. Rotomskis R, Bagdonas S, Streckyte G. J Photochem Photobiol B; 1996 Mar 16; 33(1):61-7. PubMed ID: 8786462 [Abstract] [Full Text] [Related]
12. [Photogeneration of singlet molecular oxygen by the components of hematoporphyrin IX derivative]. Egorov SIu, Tauber AIu, Krasnovskiĭ AA, Nizhnik AN, Nokel' AIu, Mironov AF. Biull Eksp Biol Med; 1989 Oct 16; 108(10):440-2. PubMed ID: 2532043 [Abstract] [Full Text] [Related]
19. Antitumor effect of 5-aminolevulinic acid-mediated photodynamic therapy can be enhanced by the use of a low dose of photofrin in human tumor xenografts. Peng Q, Warloe T, Moan J, Godal A, Apricena F, Giercksky KE, Nesland JM. Cancer Res; 2001 Aug 01; 61(15):5824-32. PubMed ID: 11479222 [Abstract] [Full Text] [Related]
20. The mechanism of Photofrin photobleaching and its consequences for photodynamic dosimetry. Georgakoudi I, Nichols MG, Foster TH. Photochem Photobiol; 1997 Jan 01; 65(1):135-44. PubMed ID: 9066293 [Abstract] [Full Text] [Related] Page: [Next] [New Search]