These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
138 related items for PubMed ID: 14102873
41. The effect of diisopropyl fluorophosphate on the proteinase and esterase activities of thrombin and on prothrombin and its activators. MILLER KD, VAN VUNAKIS H. J Biol Chem; 1956 Nov; 223(1):227-37. PubMed ID: 13376591 [No Abstract] [Full Text] [Related]
42. Reconstruction of the proteolytic pathway for use of beta-casein by Lactococcus lactis. Kunji ER, Fang G, Jeronimus-Stratingh CM, Bruins AP, Poolman B, Konings WN. Mol Microbiol; 1998 Mar; 27(6):1107-18. PubMed ID: 9570397 [Abstract] [Full Text] [Related]
43. AN INACTIVE PRECURSOR OF STREPTOCOCCAL PROTEINASE. Elliott SD, Dole VP. J Exp Med; 1947 Feb 28; 85(3):305-20. PubMed ID: 19871616 [Abstract] [Full Text] [Related]
44. Relation of growth of Streptococcus lactis and Streptococcus cremoris to amino acid transport. Poolman B, Konings WN. J Bacteriol; 1988 Feb 28; 170(2):700-7. PubMed ID: 3123462 [Abstract] [Full Text] [Related]
45. The plasmid-encoded lactococcal envelope-associated proteinase is encoded by a chromosomal gene in Lactococcus lactis subsp. cremoris BC101. Nissen-Meyer J, Lillehaug D, Nes IF. Appl Environ Microbiol; 1992 Feb 28; 58(2):750-3. PubMed ID: 1610200 [Abstract] [Full Text] [Related]
46. Plasmids in Streptococcus lactis: evidence that lactose metabolism and proteinase activity are plasmid linked. Efstathiou JD, McKay LL. Appl Environ Microbiol; 1976 Jul 28; 32(1):38-44. PubMed ID: 823866 [Abstract] [Full Text] [Related]
47. Growth stimulation of a proteinase positive Lactococcus lactis strain by a proteinase negative Lactococcus lactis strain. Picon A, Nuñez M. Int J Food Microbiol; 2007 Nov 01; 119(3):308-13. PubMed ID: 17905459 [Abstract] [Full Text] [Related]
48. Autolysis of Lactococcus lactis is influenced by proteolysis. Buist G, Venema G, Kok J. J Bacteriol; 1998 Nov 01; 180(22):5947-53. PubMed ID: 9811653 [Abstract] [Full Text] [Related]
52. Phosphate/hexose 6-phosphate antiport in Streptococcus lactis. Maloney PC, Ambudkar SV, Thomas J, Schiller L. J Bacteriol; 1984 Apr 01; 158(1):238-45. PubMed ID: 6325388 [Abstract] [Full Text] [Related]
53. The specificity of oligopeptide transport by Streptococcus thermophilus resembles that of Lactococcus lactis and not that of pathogenic streptococci. Juille O, Bars DL, Juillard V. Microbiology (Reading); 2005 Jun 01; 151(Pt 6):1987-1994. PubMed ID: 15942005 [Abstract] [Full Text] [Related]
56. Control of glycolysis by glyceraldehyde-3-phosphate dehydrogenase in Streptococcus cremoris and Streptococcus lactis. Poolman B, Bosman B, Kiers J, Konings WN. J Bacteriol; 1987 Dec 01; 169(12):5887-90. PubMed ID: 2824452 [Abstract] [Full Text] [Related]
57. Purification and characterization of an endopeptidase from Lactococcus lactis subsp. cremoris Wg2. Tan PS, Pos KM, Konings WN. Appl Environ Microbiol; 1991 Dec 01; 57(12):3593-9. PubMed ID: 1785932 [Abstract] [Full Text] [Related]
58. The extracellular PI-type proteinase of Lactococcus lactis hydrolyzes beta-casein into more than one hundred different oligopeptides. Juillard V, Laan H, Kunji ER, Jeronimus-Stratingh CM, Bruins AP, Konings WN. J Bacteriol; 1995 Jun 01; 177(12):3472-8. PubMed ID: 7768856 [Abstract] [Full Text] [Related]