These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


166 related items for PubMed ID: 14151044

  • 1. METABOLISM OF DICARBOXYLIC ACIDS IN ACETOBACTER XYLINUM.
    BENZIMAN M, ABELIOVITZ A.
    J Bacteriol; 1964 Feb; 87(2):270-7. PubMed ID: 14151044
    [Abstract] [Full Text] [Related]

  • 2. OXALOACETATE DECARBOXYLATION AND OXALOACETATE-CARBON DIOXIDE EXCHANGE IN ACETOBACTER XYLINUM.
    BENZIMAN M, HELLER N.
    J Bacteriol; 1964 Dec; 88(6):1678-87. PubMed ID: 14240957
    [Abstract] [Full Text] [Related]

  • 3. FLAVINE ADENINE DINUCLEOTIDE-LINKED MALIC DEHYDROGENASE FROM ACETOBACTER XYLINUM.
    BENZIMAN M, GALANTER Y.
    J Bacteriol; 1964 Oct; 88(4):1010-8. PubMed ID: 14219012
    [Abstract] [Full Text] [Related]

  • 4. Synthesis of cellulose by Acetobacter xylinum. VI. Growth on citric acid-cycle intermediates.
    GROMET-ELHANAN Z, HESTRIN S.
    J Bacteriol; 1963 Feb; 85(2):284-92. PubMed ID: 13950665
    [Abstract] [Full Text] [Related]

  • 5. Synthesis of cellulose from pyruvate by succinate-grown cells of Acetobacter xylinum.
    BENZIMAN M, BURGER-RACHAMIMOV H.
    J Bacteriol; 1962 Oct; 84(4):625-30. PubMed ID: 13967586
    [Abstract] [Full Text] [Related]

  • 6. METABOLIC ACTIVITY IN COXIELLA BURNETII.
    ORMSBEE RA, PEACOCK MG.
    J Bacteriol; 1964 Nov; 88(5):1205-10. PubMed ID: 14234772
    [Abstract] [Full Text] [Related]

  • 7. Purification and regulatory properties of the oxaloacetate decarboxylase of Acetobacter xylinum.
    Benziman M, Russo A, Hochman S, Weinhouse H.
    J Bacteriol; 1978 Apr; 134(1):1-9. PubMed ID: 206534
    [Abstract] [Full Text] [Related]

  • 8. Nicotinamide adenine dinucleotide- and nicotinamide adenine dinucleotide phosphate-specific glucose 6-phosphate dehydrogenases of Acetobacter xylinum and their role in the regulation of the pentose cycle.
    Benziman M, Mazover A.
    J Biol Chem; 1973 Mar 10; 248(5):1603-8. PubMed ID: 4144393
    [No Abstract] [Full Text] [Related]

  • 9. Studies on the mechanism of acetate oxidation by bacteria. V. evidence for the participation of fumarate, malate, and oxalacetate in the oxidation of acetic acid by Escherichia coli.
    AJL SJ.
    J Gen Physiol; 1951 Jul 10; 34(6):785-94. PubMed ID: 14850700
    [Abstract] [Full Text] [Related]

  • 10. Phosphorylation coupled to malate oxidation in Acetobacter xylinum.
    Benziman M, Levy L.
    Biochem Biophys Res Commun; 1966 Jul 20; 24(2):214-7. PubMed ID: 4164862
    [No Abstract] [Full Text] [Related]

  • 11. The role of ubiquinone in the respiratory chain of Acetobacter xylinum.
    Benziman M, Goldhamer H.
    Biochem J; 1968 Jun 20; 108(2):311-6. PubMed ID: 4298994
    [Abstract] [Full Text] [Related]

  • 12. Dicarboxylic acid transport in membrane vesicles from Bacillus subtilis.
    Bisschop A, Doddema H, Konings WN.
    J Bacteriol; 1975 Nov 20; 124(2):613-22. PubMed ID: 171251
    [Abstract] [Full Text] [Related]

  • 13. Purification and characterization of the NAD-preferring glucose 6-phosphate dehydrogenase from Acetobacter hansenii (Acetobacter xylinum).
    Ragunathan S, Levy HR.
    Arch Biochem Biophys; 1994 May 01; 310(2):360-6. PubMed ID: 8179320
    [Abstract] [Full Text] [Related]

  • 14. [INFLUENCE OF THE NATURE OF THE CARBON SOURCE UTILIZED DURING GROWTH ON BIOSYNTHESIS OF DIFFERENT ENZYMES IN "ACETOBACTER XYLINUM"].
    PRIEUR P.
    Bull Soc Chim Biol (Paris); 1965 May 01; 47():362-5. PubMed ID: 14337121
    [No Abstract] [Full Text] [Related]

  • 15. [Presence of 2 systems for the oxidation of acetaldehyde into acetic acid in Acetobacter xylinum].
    PRIEUR P.
    C R Hebd Seances Acad Sci; 1960 Feb 29; 250():1733-5. PubMed ID: 14434886
    [No Abstract] [Full Text] [Related]

  • 16. Fermentation of fumarate and L-malate by Clostridium formicoaceticum.
    Dorn M, Andreesen JR, Gottschalk G.
    J Bacteriol; 1978 Jan 29; 133(1):26-32. PubMed ID: 618841
    [Abstract] [Full Text] [Related]

  • 17. Direct demonstration of enol-oxaloacetate as an immediate product of malate oxidation by the mammalian succinate dehydrogenase.
    Panchenko MV, Vinogradov AD.
    FEBS Lett; 1991 Jul 29; 286(1-2):76-8. PubMed ID: 1864383
    [Abstract] [Full Text] [Related]

  • 18. RESPIRATORY PATHWAYS IN THE MYCOPLASMA. II. PATHWAY OF ELECTRON TRANSPORT DURING OXIDATION OF REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE BY MYCOPLASMA HOMINIS.
    VANDEMARK PJ, SMITH PF.
    J Bacteriol; 1964 Jul 29; 88(1):122-9. PubMed ID: 14197876
    [Abstract] [Full Text] [Related]

  • 19. Properties and regulation of leaf nicotinamide-adenine dinucleotide phosphate-malate dehydrogenase and 'malic' enzyme in plants with the C4-dicarboxylic acid pathway of photosynthesis.
    Johnson HS, Hatch MD.
    Biochem J; 1970 Sep 29; 119(2):273-80. PubMed ID: 4395182
    [Abstract] [Full Text] [Related]

  • 20. The comparative biochemistry of developing Ascaris eggs. VII. Malate oxidation and metabolism in unembryonated eggs.
    Costello LC, Smith W, Oya H.
    Comp Biochem Physiol; 1967 Apr 29; 21(1):161-70. PubMed ID: 4382290
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.