These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
188 related items for PubMed ID: 1417766
1. Evidence for cytochrome b5 as an electron donor in ricinoleic acid biosynthesis in microsomal preparations from developing castor bean (Ricinus communis L.). Smith MA, Jonsson L, Stymne S, Stobart K. Biochem J; 1992 Oct 01; 287 ( Pt 1)(Pt 1):141-4. PubMed ID: 1417766 [Abstract] [Full Text] [Related]
2. Ricinoleic acid biosynthesis and triacylglycerol assembly in microsomal preparations from developing castor-bean (Ricinus communis) endosperm. Bafor M, Smith MA, Jonsson L, Stobart K, Stymne S. Biochem J; 1991 Dec 01; 280 ( Pt 2)(Pt 2):507-14. PubMed ID: 1747126 [Abstract] [Full Text] [Related]
3. Electron-transport components of the 1-acyl-2-oleoyl-sn-glycero-3-phosphocholine delta 12-desaturase (delta 12-desaturase) in microsomal preparations from developing safflower (Carthamus tinctorius L.) cotyledons. Smith MA, Cross AR, Jones OT, Griffiths WT, Stymne S, Stobart K. Biochem J; 1990 Nov 15; 272(1):23-9. PubMed ID: 2264826 [Abstract] [Full Text] [Related]
4. Molecular and biochemical characterization of the OLE-1 high-oleic castor seed (Ricinus communis L.) mutant. Venegas-Calerón M, Sánchez R, Salas JJ, Garcés R, Martínez-Force E. Planta; 2016 Jul 15; 244(1):245-58. PubMed ID: 27056057 [Abstract] [Full Text] [Related]
5. Accumulation of ricinoleic, lesquerolic, and densipolic acids in seeds of transgenic Arabidopsis plants that express a fatty acyl hydroxylase cDNA from castor bean. Broun P, Somerville C. Plant Physiol; 1997 Mar 15; 113(3):933-42. PubMed ID: 9085577 [Abstract] [Full Text] [Related]
6. The role of cytochrome b5 in delta 12 desaturation of oleic acid by microsomes of safflower (Carthamus tinctorius L.). Kearns EV, Hugly S, Somerville CR. Arch Biochem Biophys; 1991 Feb 01; 284(2):431-6. PubMed ID: 1989527 [Abstract] [Full Text] [Related]
7. Roles of cytochrome b5 in the oxidation of testosterone and nifedipine by recombinant cytochrome P450 3A4 and by human liver microsomes. Yamazaki H, Nakano M, Imai Y, Ueng YF, Guengerich FP, Shimada T. Arch Biochem Biophys; 1996 Jan 15; 325(2):174-82. PubMed ID: 8561495 [Abstract] [Full Text] [Related]
8. Fat metabolism in higher plants. 30. Enzymatic synthesis of ricinoleic acid by a microsomal preparation from developing Ricinus communis seeds. Galliard T, Stumpf PK. J Biol Chem; 1966 Dec 25; 241(24):5806-12. PubMed ID: 4289003 [No Abstract] [Full Text] [Related]
9. Evidence against cytochrome b5 involvement in liver microsomal fatty acid elongation. Demirkapi N, Carreau JP, Ghesquier D. Biochim Biophys Acta; 1991 Feb 26; 1082(1):49-56. PubMed ID: 2009301 [Abstract] [Full Text] [Related]
10. The role of cytochrome b5 in 4alpha-methyl-oxidation and C5(6) desaturation of plant sterol precursors. Rahier A, Smith M, Taton M. Biochem Biophys Res Commun; 1997 Jul 18; 236(2):434-7. PubMed ID: 9240456 [Abstract] [Full Text] [Related]
11. Tissue-specific differences in metabolites and transcripts contribute to the heterogeneity of ricinoleic acid accumulation in Ricinus communis L. (castor) seeds. Sturtevant D, Romsdahl TB, Yu XH, Burks DJ, Azad RK, Shanklin J, Chapman KD. Metabolomics; 2019 Jan 03; 15(1):6. PubMed ID: 30830477 [Abstract] [Full Text] [Related]
12. The kinetic and spectral characterization of the E. coli-expressed mammalian CYP4A7: cytochrome b5 effects vary with substrate. Loughran PA, Roman LJ, Miller RT, Masters BS. Arch Biochem Biophys; 2001 Jan 15; 385(2):311-21. PubMed ID: 11368012 [Abstract] [Full Text] [Related]
13. Biochemical aspects of castor oil biosynthesis. McKeon TA, Chen GQ, Lin JT. Biochem Soc Trans; 2000 Dec 15; 28(6):972-4. PubMed ID: 11171276 [Abstract] [Full Text] [Related]
14. An oleate 12-hydroxylase from Ricinus communis L. is a fatty acyl desaturase homolog. van de Loo FJ, Broun P, Turner S, Somerville C. Proc Natl Acad Sci U S A; 1995 Jul 18; 92(15):6743-7. PubMed ID: 7624314 [Abstract] [Full Text] [Related]
15. Impact of unusual fatty acid synthesis on futile cycling through beta-oxidation and on gene expression in transgenic plants. Moire L, Rezzonico E, Goepfert S, Poirier Y. Plant Physiol; 2004 Jan 18; 134(1):432-42. PubMed ID: 14671017 [Abstract] [Full Text] [Related]
16. Cytochrome b5 involvement in cytochrome P450 monooxygenase activities in house fly microsomes. Zhang M, Scott JG. Arch Insect Biochem Physiol; 1994 Jan 18; 27(3):205-16. PubMed ID: 8000076 [Abstract] [Full Text] [Related]
17. Role of cytochrome b5 in NADH-dependent microsomal reduction of ferric complexes, lipid peroxidation, and hydrogen peroxide generation. Yang MX, Cederbaum AI. Arch Biochem Biophys; 1995 Dec 20; 324(2):282-92. PubMed ID: 8554320 [Abstract] [Full Text] [Related]
18. A mutation in Arabidopsis cytochrome b5 reductase identified by high-throughput screening differentially affects hydroxylation and desaturation. Kumar R, Wallis JG, Skidmore C, Browse J. Plant J; 2006 Dec 20; 48(6):920-32. PubMed ID: 17227547 [Abstract] [Full Text] [Related]
19. THE BIOSYNTHESIS OF RICINOLEIC ACID. JAMES AT, HADAWAY HC, WEBB JP. Biochem J; 1965 May 20; 95(2):448-52. PubMed ID: 14340094 [Abstract] [Full Text] [Related]
20. Contribution of cytochrome b5 to androgen synthesis in rat testicular microsomes. Ishii-Ohba H, Matsumura R, Inano H, Tamaoki B. J Biochem; 1984 Feb 20; 95(2):335-43. PubMed ID: 6425273 [Abstract] [Full Text] [Related] Page: [Next] [New Search]