These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


189 related items for PubMed ID: 14231182

  • 21. Effects of inert gases and nitrous oxide on the radiation sensitivity of HeLa cells.
    Markoe AM, Anigstein R, Schulz RJ.
    Public Health Rep (1896); 1970 Mar; 85(3):200. PubMed ID: 4984873
    [No Abstract] [Full Text] [Related]

  • 22. Size versus polarizability in protein-ligand interactions: binding of noble gases within engineered cavities in phage T4 lysozyme.
    Quillin ML, Breyer WA, Griswold IJ, Matthews BW.
    J Mol Biol; 2000 Sep 29; 302(4):955-77. PubMed ID: 10993735
    [Abstract] [Full Text] [Related]

  • 23. [Measuring coronary circulation using an inert gas method--a comparison of common indicator gases].
    Wolpers HG, Böck J, Hoeft A, Korb H, Hellige G.
    Z Kardiol; 1987 Feb 29; 76(2):95-101. PubMed ID: 3033924
    [Abstract] [Full Text] [Related]

  • 24. Absorption and elimination of inhalation anesthetics and inert gases in relation to body compartments.
    Ogli K.
    Med J Osaka Univ; 1971 Sep 29; 22(1):33-77. PubMed ID: 4949771
    [No Abstract] [Full Text] [Related]

  • 25. Neuroprotection against traumatic brain injury by xenon, but not argon, is mediated by inhibition at the N-methyl-D-aspartate receptor glycine site.
    Harris K, Armstrong SP, Campos-Pires R, Kiru L, Franks NP, Dickinson R.
    Anesthesiology; 2013 Nov 29; 119(5):1137-48. PubMed ID: 23867231
    [Abstract] [Full Text] [Related]

  • 26. Noble gas neuroprotection: xenon and argon protect against hypoxic-ischaemic injury in rat hippocampus in vitro via distinct mechanisms.
    Koziakova M, Harris K, Edge CJ, Franks NP, White IL, Dickinson R.
    Br J Anaesth; 2019 Nov 29; 123(5):601-609. PubMed ID: 31470983
    [Abstract] [Full Text] [Related]

  • 27. [Advances in research on neuroprotective effects of inert gas].
    Chen S, Guo SX, Hong Y, Zhang JM.
    Zhejiang Da Xue Xue Bao Yi Xue Ban; 2011 Jan 29; 40(1):101-6. PubMed ID: 21319382
    [Abstract] [Full Text] [Related]

  • 28. The uses of helium and xenon in current clinical practice.
    Harris PD, Barnes R.
    Anaesthesia; 2008 Mar 29; 63(3):284-93. PubMed ID: 18289236
    [Abstract] [Full Text] [Related]

  • 29. Antiapoptotic activity of argon and xenon.
    Spaggiari S, Kepp O, Rello-Varona S, Chaba K, Adjemian S, Pype J, Galluzzi L, Lemaire M, Kroemer G.
    Cell Cycle; 2013 Aug 15; 12(16):2636-42. PubMed ID: 23907115
    [Abstract] [Full Text] [Related]

  • 30. The adsorption of argon, krypton, and xenon on activated charcoal.
    Underhill DW.
    Health Phys; 1996 Aug 15; 71(2):160-6. PubMed ID: 8690598
    [Abstract] [Full Text] [Related]

  • 31. Effect of pressure of helium, argon, krypton, and xenon on the porosity, microstructure, and mechanical properties of commercially pure titanium castings.
    Zinelis S.
    J Prosthet Dent; 2000 Nov 15; 84(5):575-82. PubMed ID: 11105014
    [Abstract] [Full Text] [Related]

  • 32. Bench-to-bedside review: Molecular pharmacology and clinical use of inert gases in anesthesia and neuroprotection.
    Dickinson R, Franks NP.
    Crit Care; 2010 Nov 15; 14(4):229. PubMed ID: 20836899
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.