These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


121 related items for PubMed ID: 14236817

  • 21. ANALYSIS FOR DEPENDENCE BETWEEN SEQUENTIAL RESPONSES EVOKED IN VISUAL CORTEX.
    VASTOLA EF.
    Am J Physiol; 1965 May; 208():861-6. PubMed ID: 14286854
    [No Abstract] [Full Text] [Related]

  • 22. SLOW POTENTIAL WAVES PRODUCED IN THE CUNEATE NUCLEUS BY CUTANEOUS VOLLEYS AND BY CORTICAL STIMULATION.
    ANDERSEN P, ECCLES JC, SCHMIDT RF, YOKOTA T.
    J Neurophysiol; 1964 Jan; 27():78-91. PubMed ID: 14105317
    [No Abstract] [Full Text] [Related]

  • 23. INTRACELLULAR STUDIES OF CORTICAL NEURONS DURING THALAMIC INDUCED WAVE AND SPIKE.
    POLLEN DA.
    Electroencephalogr Clin Neurophysiol; 1964 Oct; 17():398-404. PubMed ID: 14236822
    [No Abstract] [Full Text] [Related]

  • 24. Electrophysiological and pharmacological characterization of the direct perforant path input to hippocampal area CA3.
    Berzhanskaya J, Urban NN, Barrionuevo G.
    J Neurophysiol; 1998 Apr; 79(4):2111-8. PubMed ID: 9535972
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. Two electrophysiologically distinct types of granule cells in epileptic human hippocampus.
    Dietrich D, Clusmann H, Kral T, Steinhäuser C, Blümcke I, Heinemann U, Schramm J.
    Neuroscience; 1999 Apr; 90(4):1197-206. PubMed ID: 10338290
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. Associative long-term potentiation (LTP) among extrinsic afferents of the hippocampal CA3 region in vivo.
    Martinez CO, Do VH, Martinez JL, Derrick BE.
    Brain Res; 2002 Jun 14; 940(1-2):86-94. PubMed ID: 12020879
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. A CONSIDERATION OF FEEDBACK MECHANISMS IN THE GENESIS AND MAINTENANCE OF HIPPOCAMPAL SEIZURE ACTIVITY.
    GLOOR P, SPERTI L, VERA CL.
    Epilepsia; 1964 Sep 14; 5():213-38. PubMed ID: 14232247
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. HIPPOCAMPAL THETA RHYTHM AND NEOCORTICAL D.C. POTENTIAL-SHIFTS.
    PARMEGGIANI PL, RABINI C.
    Helv Physiol Pharmacol Acta; 1964 Sep 14; 22():C31-4. PubMed ID: 14181546
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. INTRACELLULAR RECORDS FROM HIPPOCAMPAL PYRAMIDAL CELLS IN RABBIT DURING THETA RHYTHM ACTIVITY.
    Fujita Y, Sato T.
    J Neurophysiol; 1964 Nov 14; 27(6):1011-25. PubMed ID: 14223967
    [No Abstract] [Full Text] [Related]

  • 40. THE EFFECT OF REPETITIVE STIMULATION UPON MONOSYNAPTIC TRANSMISSION IN KITTENS.
    ECCLES RM, WILLIS WD.
    J Physiol; 1965 Jan 14; 176(2):311-21. PubMed ID: 14286357
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 7.