These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
306 related items for PubMed ID: 14255
1. Potential difference and the distribution of ions across the human red blood cell membrane; a study of the mechanism by which the fluorescent cation, diS-C3-(5) reports membrane potential. Hladky SB, Rink TJ. J Physiol; 1976 Dec; 263(2):287-319. PubMed ID: 14255 [Abstract] [Full Text] [Related]
2. The relation between dicarbocyanine dye fluorescence and the membrane potential of human red blood cells set at varying Donnan equilibria. Freedman JC, Hoffman JF. J Gen Physiol; 1979 Aug; 74(2):187-212. PubMed ID: 39969 [Abstract] [Full Text] [Related]
8. The influence of valinomycin induced membrane potential on erythrocyte shape. Glaser R, Gengnagel C, Donath J. Biomed Biochim Acta; 1991 Aug; 50(7):869-77. PubMed ID: 1759965 [Abstract] [Full Text] [Related]
9. Membrane potential of primitive red cells from chick embryo is a proton potential. Engelke M, Zingel W, Baumann R. J Cell Physiol; 1988 Apr; 135(1):87-93. PubMed ID: 2835379 [Abstract] [Full Text] [Related]
10. Actions of a carbocyanine dye on calcium-dependent potassium transport in human red cell ghosts. Simons TJ. J Physiol; 1979 Mar; 288():481-507. PubMed ID: 469731 [Abstract] [Full Text] [Related]
11. Membrane potentials associated with Ca-induced K conductance in human red blood cells: studies with a fluorescent oxonol dye, WW 781. Freedman JC, Novak TS. J Membr Biol; 1983 Mar; 72(1-2):59-74. PubMed ID: 6406671 [Abstract] [Full Text] [Related]
12. Assessment of membrane potential changes using the carbocyanine dye, diS-C3-(5): synchronous excitation spectroscopy studies. Plásek J, Hrouda V. Eur Biophys J; 1991 Mar; 19(4):183-8. PubMed ID: 2029874 [Abstract] [Full Text] [Related]
14. Photometric assessment of volume changes coupled with membrane potential in valinomycin-incorporated red blood cells. Yang XS, Kamino K. Jpn J Physiol; 1997 Apr; 47(2):217-30. PubMed ID: 9201551 [Abstract] [Full Text] [Related]
15. K+-valinomycin and chloride conductance of the human red cell membrane. Influence of the membrane protonophore carbonylcyanide m-chlorophenylhydrazone. Bennekou P. Biochim Biophys Acta; 1984 Sep 19; 776(1):1-9. PubMed ID: 6477898 [Abstract] [Full Text] [Related]
16. Voltage dependence of DIDS-insensitive chloride conductance in human red blood cells treated with valinomycin or gramicidin. Freedman JC, Novak TS, Bisognano JD, Pratap PR. J Gen Physiol; 1994 Nov 19; 104(5):961-83. PubMed ID: 7533207 [Abstract] [Full Text] [Related]
19. Flux ratio of valinomycin-mediated K+ fluxes across the human red cell membrane in the presence of the protonophore CCCP. Bennekou P, Christophersen P. J Membr Biol; 1986 Nov 19; 93(3):221-7. PubMed ID: 3820279 [Abstract] [Full Text] [Related]
20. Two mechanisms by which fluorescent oxonols indicate membrane potential in human red blood cells. Pratap PR, Novak TS, Freedman JC. Biophys J; 1990 Apr 19; 57(4):835-49. PubMed ID: 1693090 [Abstract] [Full Text] [Related] Page: [Next] [New Search]