These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
130 related items for PubMed ID: 1429604
1. Replacement of intracellular C-terminal domain of GLUT1 glucose transporter with that of GLUT2 increases Vmax and Km of transport activity. Katagiri H, Asano T, Ishihara H, Tsukuda K, Lin JL, Inukai K, Kikuchi M, Yazaki Y, Oka Y. J Biol Chem; 1992 Nov 05; 267(31):22550-5. PubMed ID: 1429604 [Abstract] [Full Text] [Related]
2. Characterization of rat GLUT5 and functional analysis of chimeric proteins of GLUT1 glucose transporter and GLUT5 fructose transporter. Inukai K, Katagiri H, Takata K, Asano T, Anai M, Ishihara H, Nakazaki M, Kikuchi M, Yazaki Y, Oka Y. Endocrinology; 1995 Nov 05; 136(11):4850-7. PubMed ID: 7588216 [Abstract] [Full Text] [Related]
3. The role of N-glycosylation of GLUT1 for glucose transport activity. Asano T, Katagiri H, Takata K, Lin JL, Ishihara H, Inukai K, Tsukuda K, Kikuchi M, Hirano H, Yazaki Y. J Biol Chem; 1991 Dec 25; 266(36):24632-6. PubMed ID: 1761560 [Abstract] [Full Text] [Related]
4. Domains responsible for the differential targeting of glucose transporter isoforms. Asano T, Takata K, Katagiri H, Tsukuda K, Lin JL, Ishihara H, Inukai K, Hirano H, Yazaki Y, Oka Y. J Biol Chem; 1992 Sep 25; 267(27):19636-41. PubMed ID: 1527083 [Abstract] [Full Text] [Related]
5. Glucose transporter isoforms GLUT1 and GLUT3 transport dehydroascorbic acid. Rumsey SC, Kwon O, Xu GW, Burant CF, Simpson I, Levine M. J Biol Chem; 1997 Jul 25; 272(30):18982-9. PubMed ID: 9228080 [Abstract] [Full Text] [Related]
6. Substitution of tyrosine 293 of GLUT1 locks the transporter into an outward facing conformation. Mori H, Hashiramoto M, Clark AE, Yang J, Muraoka A, Tamori Y, Kasuga M, Holman GD. J Biol Chem; 1994 Apr 15; 269(15):11578-83. PubMed ID: 8157690 [Abstract] [Full Text] [Related]
7. Characterization of GLUT3 protein expressed in Chinese hamster ovary cells. Asano T, Katagiri H, Takata K, Tsukuda K, Lin JL, Ishihara H, Inukai K, Hirano H, Yazaki Y, Oka Y. Biochem J; 1992 Nov 15; 288 ( Pt 1)(Pt 1):189-93. PubMed ID: 1445263 [Abstract] [Full Text] [Related]
8. Analysis of the structural features of the C-terminus of GLUT1 that are required for transport catalytic activity. Muraoka A, Hashiramoto M, Clark AE, Edwards LC, Sakura H, Kadowaki T, Holman GD, Kasuga M. Biochem J; 1995 Oct 15; 311 ( Pt 2)(Pt 2):699-704. PubMed ID: 7487915 [Abstract] [Full Text] [Related]
9. Substitution of leucine for tryptophan 412 does not abolish cytochalasin B labeling but markedly decreases the intrinsic activity of GLUT1 glucose transporter. Katagiri H, Asano T, Shibasaki Y, Lin JL, Tsukuda K, Ishihara H, Akanuma Y, Takaku F, Oka Y. J Biol Chem; 1991 Apr 25; 266(12):7769-73. PubMed ID: 2019601 [Abstract] [Full Text] [Related]
10. Structure-function analysis of liver-type (GLUT2) and brain-type (GLUT3) glucose transporters: expression of chimeric transporters in Xenopus oocytes suggests an important role for putative transmembrane helix 7 in determining substrate selectivity. Arbuckle MI, Kane S, Porter LM, Seatter MJ, Gould GW. Biochemistry; 1996 Dec 24; 35(51):16519-27. PubMed ID: 8987985 [Abstract] [Full Text] [Related]
11. Replacement of both tryptophan residues at 388 and 412 completely abolished cytochalasin B photolabelling of the GLUT1 glucose transporter. Inukai K, Asano T, Katagiri H, Anai M, Funaki M, Ishihara H, Tsukuda K, Kikuchi M, Yazaki Y, Oka Y. Biochem J; 1994 Sep 01; 302 ( Pt 2)(Pt 2):355-61. PubMed ID: 8092986 [Abstract] [Full Text] [Related]
12. Human erythrocyte sugar transport is incompatible with available carrier models. Cloherty EK, Heard KS, Carruthers A. Biochemistry; 1996 Aug 13; 35(32):10411-21. PubMed ID: 8756697 [Abstract] [Full Text] [Related]
13. Mammalian facilitative glucose transporters: evidence for similar substrate recognition sites in functionally monomeric proteins. Burant CF, Bell GI. Biochemistry; 1992 Oct 27; 31(42):10414-20. PubMed ID: 1420159 [Abstract] [Full Text] [Related]
14. Site-directed mutagenesis of GLUT1 in helix 7 residue 282 results in perturbation of exofacial ligand binding. Hashiramoto M, Kadowaki T, Clark AE, Muraoka A, Momomura K, Sakura H, Tobe K, Akanuma Y, Yazaki Y, Holman GD. J Biol Chem; 1992 Sep 05; 267(25):17502-7. PubMed ID: 1517202 [Abstract] [Full Text] [Related]
15. Insulin action on activity and cell surface disposition of human HepG2 glucose transporters expressed in Chinese hamster ovary cells. Harrison SA, Buxton JM, Helgerson AL, MacDonald RG, Chlapowski FJ, Carruthers A, Czech MP. J Biol Chem; 1990 Apr 05; 265(10):5793-801. PubMed ID: 2156829 [Abstract] [Full Text] [Related]
16. The glucose transport activity of GLUT1 is markedly decreased by substitution of a single amino acid with a different charge at residue 415. Ishihara H, Asano T, Katagiri H, Lin JL, Tsukuda K, Shibasaki Y, Yazaki Y, Oka Y. Biochem Biophys Res Commun; 1991 Apr 30; 176(2):922-30. PubMed ID: 2025301 [Abstract] [Full Text] [Related]
17. Role of tryptophan-388 of GLUT1 glucose transporter in glucose-transport activity and photoaffinity-labelling with forskolin. Katagiri H, Asano T, Ishihara H, Lin JL, Inukai K, Shanahan MF, Tsukuda K, Kikuchi M, Yazaki Y, Oka Y. Biochem J; 1993 May 01; 291 ( Pt 3)(Pt 3):861-7. PubMed ID: 8489512 [Abstract] [Full Text] [Related]
18. Endofacial competitive inhibition of the glucose transporter 1 activity by gossypol. Pérez A, Ojeda P, Valenzuela X, Ortega M, Sánchez C, Ojeda L, Castro M, Cárcamo JG, Rauch MC, Concha II, Rivas CI, Vera JC, Reyes AM. Am J Physiol Cell Physiol; 2009 Jul 01; 297(1):C86-93. PubMed ID: 19386788 [Abstract] [Full Text] [Related]
19. Role of the C-terminal tail of the GLUT1 glucose transporter in its expression and function in Xenopus laevis oocytes. Due AD, Qu ZC, Thomas JM, Buchs A, Powers AC, May JM. Biochemistry; 1995 Apr 25; 34(16):5462-71. PubMed ID: 7727404 [Abstract] [Full Text] [Related]