These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


182 related items for PubMed ID: 14340094

  • 1. THE BIOSYNTHESIS OF RICINOLEIC ACID.
    JAMES AT, HADAWAY HC, WEBB JP.
    Biochem J; 1965 May; 95(2):448-52. PubMed ID: 14340094
    [Abstract] [Full Text] [Related]

  • 2. Molecular and biochemical characterization of the OLE-1 high-oleic castor seed (Ricinus communis L.) mutant.
    Venegas-Calerón M, Sánchez R, Salas JJ, Garcés R, Martínez-Force E.
    Planta; 2016 Jul; 244(1):245-58. PubMed ID: 27056057
    [Abstract] [Full Text] [Related]

  • 3. Tissue-specific differences in metabolites and transcripts contribute to the heterogeneity of ricinoleic acid accumulation in Ricinus communis L. (castor) seeds.
    Sturtevant D, Romsdahl TB, Yu XH, Burks DJ, Azad RK, Shanklin J, Chapman KD.
    Metabolomics; 2019 Jan 03; 15(1):6. PubMed ID: 30830477
    [Abstract] [Full Text] [Related]

  • 4. Accumulation of ricinoleic, lesquerolic, and densipolic acids in seeds of transgenic Arabidopsis plants that express a fatty acyl hydroxylase cDNA from castor bean.
    Broun P, Somerville C.
    Plant Physiol; 1997 Mar 03; 113(3):933-42. PubMed ID: 9085577
    [Abstract] [Full Text] [Related]

  • 5. Ricinoleic acid biosynthesis and triacylglycerol assembly in microsomal preparations from developing castor-bean (Ricinus communis) endosperm.
    Bafor M, Smith MA, Jonsson L, Stobart K, Stymne S.
    Biochem J; 1991 Dec 01; 280 ( Pt 2)(Pt 2):507-14. PubMed ID: 1747126
    [Abstract] [Full Text] [Related]

  • 6. Metabolism and accumulation of hydroxylated fatty acids by castor (Ricinus comunis) seed microsomes.
    Sánchez-Álvarez A, Ruíz-López N, Moreno-Pérez AJ, Venegas-Calerón M, Martínez-Force E, Garcés R, Salas JJ.
    Plant Physiol Biochem; 2022 Jan 01; 170():266-274. PubMed ID: 34929430
    [Abstract] [Full Text] [Related]

  • 7. BIOSYNTHESIS OF FATTY ACIDS IN ASEPTICALLY REARED INSECTS.
    LAMBREMONT EN.
    Comp Biochem Physiol; 1965 Mar 01; 14():419-24. PubMed ID: 14314981
    [No Abstract] [Full Text] [Related]

  • 8. Heterologous expression of a fatty acid hydroxylase gene in developing seeds of Arabidopsis thaliana.
    Smith MA, Moon H, Chowrira G, Kunst L.
    Planta; 2003 Jul 01; 217(3):507-16. PubMed ID: 14520576
    [Abstract] [Full Text] [Related]

  • 9. A small phospholipase A2-α from castor catalyzes the removal of hydroxy fatty acids from phosphatidylcholine in transgenic Arabidopsis seeds.
    Bayon S, Chen G, Weselake RJ, Browse J.
    Plant Physiol; 2015 Apr 01; 167(4):1259-70. PubMed ID: 25667315
    [Abstract] [Full Text] [Related]

  • 10. Preparation of Ricinoleic Acid from Castor Oil:A Review.
    Nitbani FO, Tjitda PJP, Wogo HE, Detha AIR.
    J Oleo Sci; 2022 Apr 01; 71(6):781-793. PubMed ID: 35661063
    [Abstract] [Full Text] [Related]

  • 11. Evidence for cytochrome b5 as an electron donor in ricinoleic acid biosynthesis in microsomal preparations from developing castor bean (Ricinus communis L.).
    Smith MA, Jonsson L, Stymne S, Stobart K.
    Biochem J; 1992 Oct 01; 287 ( Pt 1)(Pt 1):141-4. PubMed ID: 1417766
    [Abstract] [Full Text] [Related]

  • 12. Endoplasmic reticulum-located PDAT1-2 from castor bean enhances hydroxy fatty acid accumulation in transgenic plants.
    Kim HU, Lee KR, Go YS, Jung JH, Suh MC, Kim JB.
    Plant Cell Physiol; 2011 Jun 01; 52(6):983-93. PubMed ID: 21659329
    [Abstract] [Full Text] [Related]

  • 13. Enzymic synthesis of ricinoleic acid by extracts of developing Ricinus communis L. seeds.
    Yamada M, Stumpf PK.
    Biochem Biophys Res Commun; 1964 Jun 01; 14():165-71. PubMed ID: 5837770
    [No Abstract] [Full Text] [Related]

  • 14. Screening of the entire USDA castor germplasm collection for oil content and fatty acid composition for optimum biodiesel production.
    Wang ML, Morris JB, Tonnis B, Pinnow D, Davis J, Raymer P, Pederson GA.
    J Agric Food Chem; 2011 Sep 14; 59(17):9250-6. PubMed ID: 21838261
    [Abstract] [Full Text] [Related]

  • 15. Impact of unusual fatty acid synthesis on futile cycling through beta-oxidation and on gene expression in transgenic plants.
    Moire L, Rezzonico E, Goepfert S, Poirier Y.
    Plant Physiol; 2004 Jan 14; 134(1):432-42. PubMed ID: 14671017
    [Abstract] [Full Text] [Related]

  • 16. Polyamines are essential for the synthesis of 2-ricinoleoyl phosphatidic acid in developing seeds of castor.
    Tomosugi M, Ichihara K, Saito K.
    Planta; 2006 Jan 14; 223(2):349-58. PubMed ID: 16133210
    [Abstract] [Full Text] [Related]

  • 17. Characterization of a PLDζ2 Homology Gene from Developing Castor Bean Endosperm.
    Tian B, Sun M, Jayawardana K, Wu D, Chen G.
    Lipids; 2020 Sep 14; 55(5):537-548. PubMed ID: 32115716
    [Abstract] [Full Text] [Related]

  • 18. Overexpression of Seipin1 Increases Oil in Hydroxy Fatty Acid-Accumulating Seeds.
    Lunn D, Wallis JG, Browse J.
    Plant Cell Physiol; 2018 Jan 01; 59(1):205-214. PubMed ID: 29149288
    [Abstract] [Full Text] [Related]

  • 19. THE INCORPORATION OF 14-C-LABELLED ACETATE INTO LONG CHAIN FATTY ACIDS BY MACROPHAGES IN VITRO.
    DAY AJ, FIDGE NH, WILKINSON GK.
    Biochim Biophys Acta; 1964 Apr 20; 84():149-53. PubMed ID: 14181291
    [No Abstract] [Full Text] [Related]

  • 20. BIOSYNTHESIS OF UNSATURATED FATTY ACIDS IN ACANTHAMOEBA SP.
    KORN ED.
    J Biol Chem; 1964 Feb 20; 239():396-400. PubMed ID: 14169137
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.