These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


153 related items for PubMed ID: 1435761

  • 1. Effect of spermine on peptide-bond formation, catalyzed by ribosomal peptidyltransferase.
    Kalpaxis DL, Drainas D.
    Mol Cell Biochem; 1992 Sep 22; 115(1):19-26. PubMed ID: 1435761
    [Abstract] [Full Text] [Related]

  • 2. Structure/function correlation of spermine-analogue-induced modulation of peptidyltransferase activity.
    Karahalios P, Mamos P, Karigiannis G, Kalpaxis DL.
    Eur J Biochem; 1998 Dec 01; 258(2):437-44. PubMed ID: 9874209
    [Abstract] [Full Text] [Related]

  • 3. Bimodal action of spermine on ribosomal peptidyltransferase at low concentration of magnesium ions.
    Drainas D, Kalpaxis DL.
    Biochim Biophys Acta; 1994 Sep 21; 1208(1):55-64. PubMed ID: 8086439
    [Abstract] [Full Text] [Related]

  • 4. Inhibitory effect of spermine on ribosomal peptidyltransferase.
    Kalpaxis DL, Drainas D.
    Arch Biochem Biophys; 1993 Feb 01; 300(2):629-34. PubMed ID: 8434942
    [Abstract] [Full Text] [Related]

  • 5. Effect of polyamines on the inhibition of peptidyltransferase by antibiotics: revisiting the mechanism of chloramphenicol action.
    Xaplanteri MA, Andreou A, Dinos GP, Kalpaxis DL.
    Nucleic Acids Res; 2003 Sep 01; 31(17):5074-83. PubMed ID: 12930958
    [Abstract] [Full Text] [Related]

  • 6. Photoaffinity polyamines: interactions with AcPhe-tRNA free in solution or bound at the P-site of Escherichia coli ribosomes.
    Amarantos I, Kalpaxis DL.
    Nucleic Acids Res; 2000 Oct 01; 28(19):3733-42. PubMed ID: 11000265
    [Abstract] [Full Text] [Related]

  • 7. Effects of two photoreactive spermine analogues on peptide bond formation and their application for labeling proteins in Escherichia coli functional ribosomal complexes.
    Amarantos I, Xaplanteri MA, Choli-Papadopoulou T, Kalpaxis DL.
    Biochemistry; 2001 Jun 26; 40(25):7641-50. PubMed ID: 11412118
    [Abstract] [Full Text] [Related]

  • 8. New aspects on the kinetics of activation of ribosomal peptidyltransferase-catalyzed peptide bond formation by monovalent ions and spermine.
    Michelinaki M, Spanos A, Coutsogeorgopoulos C, Kalpaxis DL.
    Biochim Biophys Acta; 1997 Oct 17; 1342(2):182-90. PubMed ID: 9392527
    [Abstract] [Full Text] [Related]

  • 9. Reactivity of the P-site-bound donor in ribosomal peptide-bond formation.
    Synetos D, Coutsogeorgopoulos C.
    Eur J Biochem; 1989 Sep 01; 184(1):47-52. PubMed ID: 2673786
    [Abstract] [Full Text] [Related]

  • 10. Partial release of AcPhe-Phe-tRNA from ribosomes during poly(U)-dependent poly(Phe) synthesis and the effects of chloramphenicol.
    Rheinberger HJ, Nierhaus KH.
    Eur J Biochem; 1990 Nov 13; 193(3):643-50. PubMed ID: 2249685
    [Abstract] [Full Text] [Related]

  • 11. Alkaloid homoharringtonine inhibits polypeptide chain elongation on human ribosomes on the step of peptide bond formation.
    Tujebajeva RM, Graifer DM, Karpova GG, Ajtkhozhina NA.
    FEBS Lett; 1989 Nov 06; 257(2):254-6. PubMed ID: 2583270
    [Abstract] [Full Text] [Related]

  • 12. [Puromycin interacts with the donor (P) site of Escherichia coli ribosomes].
    Ivanov IuV, Saminskiĭ EM.
    Mol Biol (Mosk); 1984 Nov 06; 18(5):1301-5. PubMed ID: 6390175
    [Abstract] [Full Text] [Related]

  • 13. Localization of spermine binding sites in 23S rRNA by photoaffinity labeling: parsing the spermine contribution to ribosomal 50S subunit functions.
    Xaplanteri MA, Petropoulos AD, Dinos GP, Kalpaxis DL.
    Nucleic Acids Res; 2005 Nov 06; 33(9):2792-805. PubMed ID: 15897324
    [Abstract] [Full Text] [Related]

  • 14. Determination of eukaryotic peptidyltransferase activity by pseudo-first-order kinetic analysis.
    Ioannou M, Coutsogeorgopoulos C, Drainas D.
    Anal Biochem; 1997 Apr 05; 247(1):115-22. PubMed ID: 9126380
    [Abstract] [Full Text] [Related]

  • 15. Analysis of the puromycin reaction. The ribosomal exclusion principle for AcPhe-tRNA binding re-examined.
    Geigenmüller U, Hausner TP, Nierhaus KH.
    Eur J Biochem; 1986 Dec 15; 161(3):715-21. PubMed ID: 3024981
    [Abstract] [Full Text] [Related]

  • 16. Studies on the catalytic rate constant of ribosomal peptidyltransferase.
    Synetos D, Coutsogeorgopoulos C.
    Biochim Biophys Acta; 1987 Feb 20; 923(2):275-85. PubMed ID: 3545299
    [Abstract] [Full Text] [Related]

  • 17. Similarities and differences in the inhibition patterns of thiostrepton and viomycin: evidence for two functionally different populations of P sites when occupied with AcPhe-tRNA.
    Kutay UR, Spahn CM, Nierhaus KH.
    Biochim Biophys Acta; 1990 Aug 27; 1050(1-3):193-6. PubMed ID: 2169893
    [Abstract] [Full Text] [Related]

  • 18. Effect of spermine on the binding of erythromycin to Escherichia coli ribosomes and the peptidyl-transfer reaction.
    Teraoka H, Tanaka K.
    Eur J Biochem; 1973 Mar 15; 33(3):578-83. PubMed ID: 4571502
    [No Abstract] [Full Text] [Related]

  • 19. The inhibition pattern of antibiotics on the extent and accuracy of tRNA binding to the ribosome, and their effect on the subsequent steps in chain elongation.
    Wurmbach P, Nierhaus KH.
    Eur J Biochem; 1983 Jan 17; 130(1):9-12. PubMed ID: 6186493
    [No Abstract] [Full Text] [Related]

  • 20. The ribosomal E site at low Mg2+: coordinate inactivation of ribosomal functions at Mg2+ concentrations below 10 mM and its prevention by polyamines.
    Rheinberger HJ, Nierhaus KH.
    J Biomol Struct Dyn; 1987 Oct 17; 5(2):435-46. PubMed ID: 3078235
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.