These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


133 related items for PubMed ID: 14399022

  • 21. Electron flow to photosystem I from stromal reductants in vivo: the size of the pool of stromal reductants controls the rate of electron donation to both rapidly and slowly reducing photosystem I units.
    Bukhov N, Egorova E, Carpentier R.
    Planta; 2002 Sep; 215(5):812-20. PubMed ID: 12244447
    [Abstract] [Full Text] [Related]

  • 22. Isolation of the light-harvesting chlorophyll a/b--protein complex from thylakoid membranes of barley by adsorption chromatography on controlled-pore glass.
    Dunkley PR, Anderson JM.
    Arch Biochem Biophys; 1979 Apr 01; 193(2):469-77. PubMed ID: 464607
    [No Abstract] [Full Text] [Related]

  • 23. The barley anion channel, HvALMT1, has multiple roles in guard cell physiology and grain metabolism.
    Xu M, Gruber BD, Delhaize E, White RG, James RA, You J, Yang Z, Ryan PR.
    Physiol Plant; 2015 Jan 01; 153(1):183-93. PubMed ID: 24853664
    [Abstract] [Full Text] [Related]

  • 24. Correlation of ribulose 1,5-diphosphate carboxylase activity with chlorophyll content and ultrastructure in induced mutants of Hordeum vulgare.
    Kleinhofs A, Shumway LK.
    Biochem Genet; 1969 Oct 01; 3(5):485-92. PubMed ID: 5358141
    [No Abstract] [Full Text] [Related]

  • 25. The products of metabolism of [14C]triadimefon in the grain and in the straw of ripe barley.
    Rouchaud J, Moons C, Meyer JA.
    Bull Environ Contam Toxicol; 1981 Oct 01; 27(4):543-50. PubMed ID: 7306719
    [No Abstract] [Full Text] [Related]

  • 26. Assembly of the D1 precursor in monomeric photosystem II reaction center precomplexes precedes chlorophyll a-triggered accumulation of reaction center II in barley etioplasts.
    Müller B, Eichacker LA.
    Plant Cell; 1999 Dec 01; 11(12):2365-77. PubMed ID: 10590164
    [Abstract] [Full Text] [Related]

  • 27. Remodeling of the major light-harvesting antenna protein of PSII protects the young leaves of barley (Hordeum vulgare L.) from photoinhibition under prolonged iron deficiency.
    Saito A, Iino T, Sonoike K, Miwa E, Higuchi K.
    Plant Cell Physiol; 2010 Dec 01; 51(12):2013-30. PubMed ID: 20980268
    [Abstract] [Full Text] [Related]

  • 28. Involvement of the thylakoidal NADH-plastoquinone-oxidoreductase complex in the early responses to ozone exposure of barley (Hordeum vulgare L.) seedlings.
    Guéra A, Calatayud A, Sabater B, Barreno E.
    J Exp Bot; 2005 Jan 01; 56(409):205-18. PubMed ID: 15557294
    [Abstract] [Full Text] [Related]

  • 29. The photochemical activities and electron carriers of developing barley leaves.
    Plesnicar M, Bendall DS.
    Biochem J; 1973 Nov 01; 136(3):803-12. PubMed ID: 4780703
    [Abstract] [Full Text] [Related]

  • 30. Global spectral-kinetic analysis of room temperature chlorophyll a fluorescence from light-harvesting antenna mutants of barley.
    Gilmor AM, Itoh S, Govindjee.
    Philos Trans R Soc Lond B Biol Sci; 2000 Oct 29; 355(1402):1371-84. PubMed ID: 11127992
    [Abstract] [Full Text] [Related]

  • 31. Evaluation of chlorophyll fluorescence and membrane injury in the leaves of barley cultivars under osmotic stress.
    Kocheva K, Lambrev P, Georgiev G, Goltsev V, Karabaliev M.
    Bioelectrochemistry; 2004 Jun 29; 63(1-2):121-4. PubMed ID: 15110261
    [Abstract] [Full Text] [Related]

  • 32. Influence of soil plutonium concentration on plutonium uptake and distribution in shoots and roots of barley.
    Wildung RE, Garland TR.
    J Agric Food Chem; 1974 Jun 29; 22(5):836-8. PubMed ID: 4425063
    [No Abstract] [Full Text] [Related]

  • 33. Effect of divalent cations on ion fluxes and leaf photochemistry in salinized barley leaves.
    Shabala S, Shabala L, Van Volkenburgh E, Newman I.
    J Exp Bot; 2005 May 29; 56(415):1369-78. PubMed ID: 15809285
    [Abstract] [Full Text] [Related]

  • 34. Efficient removal of cyclobutane pyrimidine dimers in barley: differential contribution of light-dependent and dark DNA repair pathways.
    Manova V, Georgieva R, Borisov B, Stoilov L.
    Physiol Plant; 2016 Oct 29; 158(2):236-53. PubMed ID: 27021252
    [Abstract] [Full Text] [Related]

  • 35. Both light-dependent protochlorophyllide oxidoreductase A and protochlorophyllide oxidoreductase B are down-regulated in the slender mutant of barley.
    Ougham HJ, Thomas AM, Thomas BJ, Frick GA, Armstrong GA.
    J Exp Bot; 2001 Jul 29; 52(360):1447-54. PubMed ID: 11457904
    [Abstract] [Full Text] [Related]

  • 36. Evidence for a light-independent protochlorophyllide reductase in green barley leaves.
    Adamson H.
    Prog Clin Biol Res; 1982 Jul 29; 102 Pt B():33-41. PubMed ID: 7163175
    [Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Regulation of the excitation energy utilization in the photosynthetic apparatus of chlorina f2 barley mutant grown under different irradiances.
    Stroch M, Cajánek M, Kalina J, Spunda V.
    J Photochem Photobiol B; 2004 Jul 19; 75(1-2):41-50. PubMed ID: 15246349
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 7.