These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
404 related items for PubMed ID: 1444271
61. Drug target validation of the trypanothione pathway enzymes through metabolic modelling. Olin-Sandoval V, González-Chávez Z, Berzunza-Cruz M, Martínez I, Jasso-Chávez R, Becker I, Espinoza B, Moreno-Sánchez R, Saavedra E. FEBS J; 2012 May; 279(10):1811-33. PubMed ID: 22394478 [Abstract] [Full Text] [Related]
62. Structures of tryparedoxins revealing interaction with trypanothione. Hofmann B, Budde H, Bruns K, Guerrero SA, Kalisz HM, Menge U, Montemartini M, Nogoceke E, Steinert P, Wissing JB, Flohé L, Hecht HJ. Biol Chem; 2001 Mar; 382(3):459-71. PubMed ID: 11347894 [Abstract] [Full Text] [Related]
63. Synthesis and evaluation of substrate analogue inhibitors of trypanothione reductase. Duyzend MH, Clark CT, Simmons SL, Johnson WB, Larson AM, Leconte AM, Wills AW, Ginder-Vogel M, Wilhelm AK, Czechowicz JA, Alberg DG. J Enzyme Inhib Med Chem; 2012 Dec; 27(6):784-94. PubMed ID: 22085139 [Abstract] [Full Text] [Related]
64. Specificity of the trypanothione-dependent Leishmania major glyoxalase I: structure and biochemical comparison with the human enzyme. Ariza A, Vickers TJ, Greig N, Armour KA, Dixon MJ, Eggleston IM, Fairlamb AH, Bond CS. Mol Microbiol; 2006 Feb; 59(4):1239-48. PubMed ID: 16430697 [Abstract] [Full Text] [Related]
65. Redox metabolism in Trypanosoma cruzi: functional characterization of tryparedoxins revisited. Arias DG, Marquez VE, Chiribao ML, Gadelha FR, Robello C, Iglesias AA, Guerrero SA. Free Radic Biol Med; 2013 Oct; 63():65-77. PubMed ID: 23665397 [Abstract] [Full Text] [Related]
66. Active site of trypanothione reductase. A target for rational drug design. Hunter WN, Bailey S, Habash J, Harrop SJ, Helliwell JR, Aboagye-Kwarteng T, Smith K, Fairlamb AH. J Mol Biol; 1992 Sep 05; 227(1):322-33. PubMed ID: 1522596 [Abstract] [Full Text] [Related]
67. Effects of trypanothione on the biological activity of irradiated transforming DNA. Awad S, Henderson GB, Cerami A, Held KD. Int J Radiat Biol; 1992 Oct 05; 62(4):401-7. PubMed ID: 1357053 [Abstract] [Full Text] [Related]
72. Characterization of recombinant glutathionylspermidine synthetase/amidase from Crithidia fasciculata. Oza SL, Ariyanayagam MR, Fairlamb AH. Biochem J; 2002 Jun 15; 364(Pt 3):679-86. PubMed ID: 12049631 [Abstract] [Full Text] [Related]
73. Docking and molecular dynamics studies at trypanothione reductase and glutathione reductase active sites. Iribarne F, Paulino M, Aguilera S, Murphy M, Tapia O. J Mol Model; 2002 May 15; 8(5):173-83. PubMed ID: 12111385 [Abstract] [Full Text] [Related]
74. Glutathionylation of trypanosomal thiol redox proteins. Melchers J, Dirdjaja N, Ruppert T, Krauth-Siegel RL. J Biol Chem; 2007 Mar 23; 282(12):8678-94. PubMed ID: 17242409 [Abstract] [Full Text] [Related]
75. The trypanothione system. Krauth-Siegel LR, Comini MA, Schlecker T. Subcell Biochem; 2007 Mar 23; 44():231-51. PubMed ID: 18084897 [Abstract] [Full Text] [Related]
76. Characterisation of melarsen-resistant Trypanosoma brucei brucei with respect to cross-resistance to other drugs and trypanothione metabolism. Fairlamb AH, Carter NS, Cunningham M, Smith K. Mol Biochem Parasitol; 1992 Jul 23; 53(1-2):213-22. PubMed ID: 1501641 [Abstract] [Full Text] [Related]
77. Aldehyde and phosphinate analogs of glutathione and glutathionylspermidine: potent, selective binding inhibitors of the E. coli bifunctional glutathionylspermidine synthetase/amidase. Lin CH, Chen S, Kwon DS, Coward JK, Walsh CT. Chem Biol; 1997 Nov 23; 4(11):859-66. PubMed ID: 9384533 [Abstract] [Full Text] [Related]