These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


249 related items for PubMed ID: 1446389

  • 1. Role of the L-arginine-nitric oxide pathway in the changes in cerebrovascular reactivity following hemorrhagic hypotension and retransfusion.
    Szabó C, Csáki C, Benyó Z, Reivich M, Kovách AG.
    Circ Shock; 1992 Aug; 37(4):307-16. PubMed ID: 1446389
    [Abstract] [Full Text] [Related]

  • 2. Effect of superoxide dismutase on hemorrhagic hypotension and retransfusion-evoked middle cerebral artery endothelial dysfunction.
    Szabó C, Csáki C, Benyó Z, Marczis J, Reivich M, Kovách AG.
    Circ Shock; 1994 Nov; 44(3):104-10. PubMed ID: 7600633
    [Abstract] [Full Text] [Related]

  • 3. Hemorrhagic hypotension impairs endothelium-dependent relaxations in the renal artery of the cat.
    Szabó C, Faragó M, Horváth I, Lohinai Z, Kovách AG.
    Circ Shock; 1992 Mar; 36(3):238-41. PubMed ID: 1611708
    [Abstract] [Full Text] [Related]

  • 4. Nitric oxide and effects of cationic polypeptides in canine cerebral arteries.
    Kinoshita H, Katusic ZS.
    J Cereb Blood Flow Metab; 1997 Apr; 17(4):470-80. PubMed ID: 9143230
    [Abstract] [Full Text] [Related]

  • 5. Role of platelet-activating factor in the development of endothelial dysfunction in hemorrhagic hypotension and retransfusion.
    Csáki C, Szabó C, Benyó Z, Kovách AG.
    Thromb Res; 1992 Apr 01; 66(1):23-31. PubMed ID: 1412179
    [Abstract] [Full Text] [Related]

  • 6. Effects of L-arginine analogues in isolated cat cerebral arteries.
    Fraile ML, López de Pablo AL, Marco EJ, Sanz L, Moreno MJ, Conde MV.
    Rev Esp Fisiol; 1993 Sep 01; 49(3):187-93. PubMed ID: 8310170
    [Abstract] [Full Text] [Related]

  • 7. Contribution of K+ channels and ouabain-sensitive mechanisms to the endothelium-dependent relaxations of horse penile small arteries.
    Prieto D, Simonsen U, Hernández M, García-Sacristán A.
    Br J Pharmacol; 1998 Apr 01; 123(8):1609-20. PubMed ID: 9605568
    [Abstract] [Full Text] [Related]

  • 8. Augmented endothelium-derived hyperpolarizing factor-mediated relaxations attenuate endothelial dysfunction in femoral and mesenteric, but not in carotid arteries from type I diabetic rats.
    Shi Y, Ku DD, Man RY, Vanhoutte PM.
    J Pharmacol Exp Ther; 2006 Jul 01; 318(1):276-81. PubMed ID: 16565165
    [Abstract] [Full Text] [Related]

  • 9. Involvement of ATP in the non-adrenergic non-cholinergic inhibitory neurotransmission of lamb isolated coronary small arteries.
    Simonsen U, García-Sacristán A, Prieto D.
    Br J Pharmacol; 1997 Feb 01; 120(3):411-20. PubMed ID: 9031744
    [Abstract] [Full Text] [Related]

  • 10. Effects of NG-nitro-L-arginine and L-arginine on regional cerebral blood flow in the cat.
    Kovách AG, Szabó C, Benyó Z, Csáki C, Greenberg JH, Reivich M.
    J Physiol; 1992 Apr 01; 449():183-96. PubMed ID: 1522509
    [Abstract] [Full Text] [Related]

  • 11. Interactions between endothelium-derived relaxing factors in the rat hepatic artery: focus on regulation of EDHF.
    Zygmunt PM, Plane F, Paulsson M, Garland CJ, Högestätt ED.
    Br J Pharmacol; 1998 Jul 01; 124(5):992-1000. PubMed ID: 9692786
    [Abstract] [Full Text] [Related]

  • 12. Enhanced prostanoid-mediated vasorelaxation in pulmonary arteries isolated during experimental endotoxemia.
    Myers TP, Myers PR, Adams HR, Parker JL.
    Shock; 1999 Jun 01; 11(6):436-42. PubMed ID: 10454834
    [Abstract] [Full Text] [Related]

  • 13. The L-arginine-nitric oxide pathway in the canine femoral vascular bed: in vitro and in vivo experiments.
    Richard V, Gosgnach M, Drieu la Rochelle C, Giudicelli JF, Berdeaux A.
    Fundam Clin Pharmacol; 1991 Jun 01; 5(9):777-88. PubMed ID: 1794833
    [Abstract] [Full Text] [Related]

  • 14. Activity of the L-arginine/nitric oxide pathway and endothelin-1 in experimental heart failure.
    Noll G, Tschudi MR, Novosel D, Lüscher TF.
    J Cardiovasc Pharmacol; 1994 Jun 01; 23(6):916-21. PubMed ID: 7523783
    [Abstract] [Full Text] [Related]

  • 15. Endothelium-dependent regulation of vascular tone of the porcine ophthalmic artery.
    Yao K, Tschudi M, Flammer J, Lüscher TF.
    Invest Ophthalmol Vis Sci; 1991 May 01; 32(6):1791-8. PubMed ID: 2032802
    [Abstract] [Full Text] [Related]

  • 16. The sydnonimine C87-3754 evokes endothelium-independent relaxations and prevents endothelium-dependent contractions in blood vessels of the dog.
    Schini VB, Bond R, Gao Y, Illiano S, Junquero DC, Mombouli JV, Nagao T, Smart F, Vanhoutte PM.
    J Cardiovasc Pharmacol; 1993 May 01; 22 Suppl 7():S10-6. PubMed ID: 7504762
    [Abstract] [Full Text] [Related]

  • 17. Endothelial L-arginine pathway and relaxations to vasopressin in canine basilar artery.
    Cosentino F, Sill JC, Katusić ZS.
    Am J Physiol; 1993 Feb 01; 264(2 Pt 2):H413-8. PubMed ID: 8383455
    [Abstract] [Full Text] [Related]

  • 18. Characterization of endothelium-dependent relaxations resistant to nitro-L-arginine in the porcine coronary artery.
    Nagao T, Vanhoutte PM.
    Br J Pharmacol; 1992 Dec 01; 107(4):1102-7. PubMed ID: 1467832
    [Abstract] [Full Text] [Related]

  • 19. Nitric oxide-mediated retinal arteriolar and arterial dilatation induced by substance P.
    Kitamura Y, Okamura T, Kani K, Toda N.
    Invest Ophthalmol Vis Sci; 1993 Sep 01; 34(10):2859-65. PubMed ID: 7689544
    [Abstract] [Full Text] [Related]

  • 20. Predominant role for nitric oxide in the relaxation induced by acetylcholine in cat cerebral arteries.
    Alonso MJ, Salaices M, Sanchez-Ferrer CF, Marin J.
    J Pharmacol Exp Ther; 1992 Apr 01; 261(1):12-20. PubMed ID: 1313867
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.