These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


300 related items for PubMed ID: 1446478

  • 1. Skeletal muscle metabolism in the chronic fatigue syndrome. In vivo assessment by 31P nuclear magnetic resonance spectroscopy.
    Wong R, Lopaschuk G, Zhu G, Walker D, Catellier D, Burton D, Teo K, Collins-Nakai R, Montague T.
    Chest; 1992 Dec; 102(6):1716-22. PubMed ID: 1446478
    [Abstract] [Full Text] [Related]

  • 2. Energy metabolism of the untrained muscle of elite runners as observed by 31P magnetic resonance spectroscopy: evidence suggesting a genetic endowment for endurance exercise.
    Park JH, Brown RL, Park CR, Cohn M, Chance B.
    Proc Natl Acad Sci U S A; 1988 Dec; 85(23):8780-4. PubMed ID: 3194388
    [Abstract] [Full Text] [Related]

  • 3. In vivo skeletal muscle metabolism during dynamic exercise and recovery: assessment by nuclear magnetic resonance spectroscopy.
    Wong R, Lopaschuk G, Teo K, Walker D, Catellier D, Zhu G, Burton D, Collins-Nakai R, Montague T.
    Can J Cardiol; 1992 Oct; 8(8):819-24. PubMed ID: 1423003
    [Abstract] [Full Text] [Related]

  • 4. Metabolism of normal skeletal muscle during dynamic exercise to clinical fatigue: in vivo assessment by nuclear magnetic resonance spectroscopy.
    Wong R, Davies N, Marshall D, Allen P, Zhu G, Lopaschuk G, Montague T.
    Can J Cardiol; 1990 Nov; 6(9):391-5. PubMed ID: 2276074
    [Abstract] [Full Text] [Related]

  • 5. Abnormalities in pH handling by peripheral muscle and potential regulation by the autonomic nervous system in chronic fatigue syndrome.
    Jones DE, Hollingsworth KG, Taylor R, Blamire AM, Newton JL.
    J Intern Med; 2010 Apr; 267(4):394-401. PubMed ID: 20433583
    [Abstract] [Full Text] [Related]

  • 6. Reduced oxidative muscle metabolism in chronic fatigue syndrome.
    McCully KK, Natelson BH, Iotti S, Sisto S, Leigh JS.
    Muscle Nerve; 1996 May; 19(5):621-5. PubMed ID: 8618560
    [Abstract] [Full Text] [Related]

  • 7. Effects of cardiac transplantation on bioenergetic abnormalities of skeletal muscle in congestive heart failure.
    Stratton JR, Kemp GJ, Daly RC, Yacoub M, Rajagopalan B.
    Circulation; 1994 Apr; 89(4):1624-31. PubMed ID: 8149530
    [Abstract] [Full Text] [Related]

  • 8. Endurance-trained and untrained skeletal muscle bioenergetics observed with magnetic resonance spectroscopy.
    Guthrie BM, Frostick SP, Goodman J, Mikulis DJ, Plyley MJ, Marshall KW.
    Can J Appl Physiol; 1996 Aug; 21(4):251-63. PubMed ID: 8853467
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. 31P nuclear magnetic resonance evidence of abnormal skeletal muscle metabolism in patients with congestive heart failure.
    Massie BM, Conway M, Yonge R, Frostick S, Sleight P, Ledingham J, Radda G, Rajagopalan B.
    Am J Cardiol; 1987 Aug 01; 60(4):309-15. PubMed ID: 3618489
    [Abstract] [Full Text] [Related]

  • 11. A non-invasive selective assessment of type I fibre mitochondrial function using 31P NMR spectroscopy. Evidence for impaired oxidative phosphorylation rate in skeletal muscle in patients with chronic heart failure.
    van der Ent M, Jeneson JA, Remme WJ, Berger R, Ciampricotti R, Visser F.
    Eur Heart J; 1998 Jan 01; 19(1):124-31. PubMed ID: 9503185
    [Abstract] [Full Text] [Related]

  • 12. Examination of the energetics of aging skeletal muscle using nuclear magnetic resonance.
    Taylor DJ, Crowe M, Bore PJ, Styles P, Arnold DL, Radda GK.
    Gerontology; 1984 Jan 01; 30(1):2-7. PubMed ID: 6698405
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Abnormal skeletal muscle bioenergetics during exercise in patients with heart failure: role of reduced muscle blood flow.
    Wiener DH, Fink LI, Maris J, Jones RA, Chance B, Wilson JR.
    Circulation; 1986 Jun 01; 73(6):1127-36. PubMed ID: 3698247
    [Abstract] [Full Text] [Related]

  • 16. Phosphorus-31 nuclear magnetic resonance study on the effects of endurance training in rat skeletal muscle.
    Kuno SY, Akisada M, Mitsumori F.
    Eur J Appl Physiol Occup Physiol; 1992 Jun 01; 65(2):197-201. PubMed ID: 1396645
    [Abstract] [Full Text] [Related]

  • 17. Functional pools of oxidative and glycolytic fibers in human muscle observed by 31P magnetic resonance spectroscopy during exercise.
    Park JH, Brown RL, Park CR, McCully K, Cohn M, Haselgrove J, Chance B.
    Proc Natl Acad Sci U S A; 1987 Dec 01; 84(24):8976-80. PubMed ID: 3480522
    [Abstract] [Full Text] [Related]

  • 18. P-31 magnetic resonance spectroscopy demonstrates unaltered muscle energy utilization in polymyalgia rheumatica.
    Mattei JP, Bendahan D, Erkintalo M, Harle JR, Weiller PJ, Roux H, Cozzone PJ.
    Arthritis Rheum; 1997 Oct 01; 40(10):1817-22. PubMed ID: 9336416
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.