These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


86 related items for PubMed ID: 14492758

  • 1. Chlorophyll biosynthesis and turnover in wheat leaves.
    ROBERTS DW, PERKINS HJ.
    Biochim Biophys Acta; 1962 Apr 23; 58():499-506. PubMed ID: 14492758
    [No Abstract] [Full Text] [Related]

  • 2. Chlorophyll biosynthesis in wheat leaves.
    PERKINS HJ, ROBERTS DW.
    Biochim Biophys Acta; 1960 Dec 18; 45():613-4. PubMed ID: 13734402
    [No Abstract] [Full Text] [Related]

  • 3. Biosynthesis of chlorophyll from acetate-1-C14 and glycine-1-C14 by wheat leaves.
    ROBERTS DW, PERKINS HJ.
    Can J Biochem Physiol; 1962 Jul 18; 40():973-4. PubMed ID: 14492757
    [No Abstract] [Full Text] [Related]

  • 4. [Various conditions of chlorophyll in leaves].
    KRASNOVSKII AA, KOSOBUTSKAIA LM.
    Dokl Akad Nauk SSSR; 1953 Jul 11; 91(2):343-6. PubMed ID: 13083538
    [No Abstract] [Full Text] [Related]

  • 5. [Transformation of protochlorophyll into chlorophyll in etiolated maize leaves in infiltration of Picea excelsa extract].
    GODNEV TN, TERENT'EVA MV.
    Dokl Akad Nauk SSSR; 1953 Feb 01; 88(4):725-7. PubMed ID: 13033725
    [No Abstract] [Full Text] [Related]

  • 6. Biosynthesis of chlorophyll b.
    Aronoff S, Kwok E.
    Can J Biochem; 1977 Oct 01; 55(10):1091-5. PubMed ID: 912600
    [Abstract] [Full Text] [Related]

  • 7. Effects of tetrabromobisphenol A as an emerging pollutant on wheat (Triticum aestivum) at biochemical levels.
    Li Y, Zhou Q, Li F, Liu X, Luo Y.
    Chemosphere; 2008 Dec 01; 74(1):119-24. PubMed ID: 18835007
    [Abstract] [Full Text] [Related]

  • 8. [Effect of presowing treatment of spring wheat seeds with wheat germ agglutinin on the chlorophyll content, lectin activity in leaves and nitrogen-fixing capacity of rhizospheric microorganisms].
    Kyrychenko OV.
    Ukr Biokhim Zh (1999); 2008 Dec 01; 80(1):107-13. PubMed ID: 18710035
    [Abstract] [Full Text] [Related]

  • 9. Metabolism of radioactive asparagine in wheat leaves and Lupinus angustifolius seedlings.
    NELSON CD, KROTKOV G, REED GB.
    Arch Biochem Biophys; 1953 May 01; 44(1):218-25. PubMed ID: 13058371
    [No Abstract] [Full Text] [Related]

  • 10. Hydroxymethylated Dioxobilins in Senescent Arabidopsis thaliana Leaves: Sign of a Puzzling Biosynthetic Intermezzo of Chlorophyll Breakdown.
    Süssenbacher I, Kreutz CR, Christ B, Hörtensteiner S, Kräutler B.
    Chemistry; 2015 Aug 10; 21(33):11664-70. PubMed ID: 26179061
    [Abstract] [Full Text] [Related]

  • 11. Toxic effects of perfluorooctane sulfonate (PFOS) on wheat (Triticum aestivum L.) plant.
    Qu B, Zhao H, Zhou J.
    Chemosphere; 2010 Apr 10; 79(5):555-60. PubMed ID: 20193959
    [Abstract] [Full Text] [Related]

  • 12. [Luminescent indicators in various parts of wheat leaves in ontogenesis].
    Poliakova IB, Karavaev VA, Solntsev MK, chechulina AA.
    Biofizika; 2003 Apr 10; 48(6):1108-15. PubMed ID: 14714527
    [Abstract] [Full Text] [Related]

  • 13. Using combined measurements of gas exchange and chlorophyll fluorescence to estimate parameters of a biochemical C photosynthesis model: a critical appraisal and a new integrated approach applied to leaves in a wheat (Triticum aestivum) canopy.
    Yin X, Struik PC, Romero P, Harbinson J, Evers JB, VAN DER Putten PE, Vos J.
    Plant Cell Environ; 2009 May 10; 32(5):448-64. PubMed ID: 19183300
    [Abstract] [Full Text] [Related]

  • 14. Ultrastructural observation of mesophyll cells and temporal expression profiles of the genes involved in transitory starch metabolism in flag leaves of wheat after anthesis.
    Kang G, Peng X, Wang L, Yang Y, Shao R, Xie Y, Ma D, Wang C, Guo T, Zhu Y.
    Physiol Plant; 2015 Jan 10; 153(1):12-29. PubMed ID: 24853500
    [Abstract] [Full Text] [Related]

  • 15. Physiological and Antioxidant Responses in Wheat (Triticum aestivum) to HHCB in Soil.
    Chen C, Cai Z.
    Bull Environ Contam Toxicol; 2015 Aug 10; 95(2):272-7. PubMed ID: 26013820
    [Abstract] [Full Text] [Related]

  • 16. Analysis of elevated temperature-induced inhibition of photosystem II using chlorophyll a fluorescence induction kinetics in wheat leaves (Triticum aestivum).
    Mathur S, Jajoo A, Mehta P, Bharti S.
    Plant Biol (Stuttg); 2011 Jan 10; 13(1):1-6. PubMed ID: 21143718
    [Abstract] [Full Text] [Related]

  • 17. Joint stress of chlorimuron-ethyl and cadmium on wheat Triticum aestivum at biochemical levels.
    Wang ME, Zhou QX.
    Environ Pollut; 2006 Nov 10; 144(2):572-80. PubMed ID: 16530309
    [Abstract] [Full Text] [Related]

  • 18. [Effects of dark induced senescence on the function of photosystem II in flag leaves of winter wheat released in different years.].
    Yang C, Zhang Q, Du SM, Shao YH, Fang BT, Li XD, Yue JQ, Zhang SY.
    Ying Yong Sheng Tai Xue Bao; 2018 Aug 10; 29(8):2525-2531. PubMed ID: 30182591
    [Abstract] [Full Text] [Related]

  • 19. Identification of new SSR markers linked to leaf chlorophyll content, flag leaf senescence and cell membrane stability traits in wheat under water stressed condition.
    Barakat MN, Saleh M, Al-Doss AA, Moustafa KA, Elshafei AA, Al-Qurainy FH.
    Acta Biol Hung; 2015 Mar 10; 66(1):93-102. PubMed ID: 25740441
    [Abstract] [Full Text] [Related]

  • 20. Light activation of Russian wheat aphid-elicited physiological responses in susceptible wheat.
    Macedo TB, Higley LG, Ni X, Quisenberry SS.
    J Econ Entomol; 2003 Feb 10; 96(1):194-201. PubMed ID: 12650362
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.