These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
260 related items for PubMed ID: 14500908
1. Complete genome sequence and analysis of Wolinella succinogenes. Baar C, Eppinger M, Raddatz G, Simon J, Lanz C, Klimmek O, Nandakumar R, Gross R, Rosinus A, Keller H, Jagtap P, Linke B, Meyer F, Lederer H, Schuster SC. Proc Natl Acad Sci U S A; 2003 Sep 30; 100(20):11690-5. PubMed ID: 14500908 [Abstract] [Full Text] [Related]
2. Heterologous production in Wolinella succinogenes and characterization of the quinol:fumarate reductase enzymes from Helicobacter pylori and Campylobacter jejuni. Mileni M, MacMillan F, Tziatzios C, Zwicker K, Haas AH, Mäntele W, Simon J, Lancaster CR. Biochem J; 2006 Apr 01; 395(1):191-201. PubMed ID: 16367742 [Abstract] [Full Text] [Related]
8. Nucleotide sequence of the Wolinella succinogenes flagellin, which contains in the antigenic domain two conserved regions also present in Campylobacter spp. and Helicobacter pylori. Schuster SC, Bauer M, Kellermann J, Lottspeich F, Baeuerlein E. J Bacteriol; 1994 Aug 01; 176(16):5151-5. PubMed ID: 8051032 [Abstract] [Full Text] [Related]
10. The Wolinella succinogenes mcc gene cluster encodes an unconventional respiratory sulphite reduction system. Kern M, Klotz MG, Simon J. Mol Microbiol; 2011 Dec 01; 82(6):1515-30. PubMed ID: 22040142 [Abstract] [Full Text] [Related]
11. A NapC/NirT-type cytochrome c (NrfH) is the mediator between the quinone pool and the cytochrome c nitrite reductase of Wolinella succinogenes. Simon J, Gross R, Einsle O, Kroneck PM, Kröger A, Klimmek O. Mol Microbiol; 2000 Feb 01; 35(3):686-96. PubMed ID: 10672190 [Abstract] [Full Text] [Related]
12. Electron transport chains and bioenergetics of respiratory nitrogen metabolism in Wolinella succinogenes and other Epsilonproteobacteria. Kern M, Simon J. Biochim Biophys Acta; 2009 Jun 01; 1787(6):646-56. PubMed ID: 19171117 [Abstract] [Full Text] [Related]
13. Identification of disulfide reductases in Campylobacterales: a bioinformatics investigation. Kaakoush NO, Sterzenbach T, Miller WG, Suerbaum S, Mendz GL. Antonie Van Leeuwenhoek; 2007 Nov 01; 92(4):429-41. PubMed ID: 17588128 [Abstract] [Full Text] [Related]
14. Substrate specificity of three cytochrome c haem lyase isoenzymes from Wolinella succinogenes: unconventional haem c binding motifs are not sufficient for haem c attachment by NrfI and CcsA1. Kern M, Eisel F, Scheithauer J, Kranz RG, Simon J. Mol Microbiol; 2010 Jan 01; 75(1):122-37. PubMed ID: 19919672 [Abstract] [Full Text] [Related]
15. Succinate:quinone oxidoreductases from epsilon-proteobacteria. Lancaster CR, Simon J. Biochim Biophys Acta; 2002 Jan 17; 1553(1-2):84-101. PubMed ID: 11803019 [Abstract] [Full Text] [Related]
19. The hydE gene is essential for the formation of Wolinella succinogenes NiFe-hydrogenase. Gross R, Simon J. FEMS Microbiol Lett; 2003 Oct 24; 227(2):197-202. PubMed ID: 14592709 [Abstract] [Full Text] [Related]
20. Molecular signatures (unique proteins and conserved indels) that are specific for the epsilon proteobacteria (Campylobacterales). Gupta RS. BMC Genomics; 2006 Jul 04; 7():167. PubMed ID: 16817973 [Abstract] [Full Text] [Related] Page: [Next] [New Search]