These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Hfq and Hfq-dependent small RNAs are major contributors to multicellular development in Salmonella enterica serovar Typhimurium. Monteiro C, Papenfort K, Hentrich K, Ahmad I, Le Guyon S, Reimann R, Grantcharova N, Römling U. RNA Biol; 2012 Apr; 9(4):489-502. PubMed ID: 22336758 [Abstract] [Full Text] [Related]
4. Role of EAL-containing proteins in multicellular behavior of Salmonella enterica serovar Typhimurium. Simm R, Lusch A, Kader A, Andersson M, Römling U. J Bacteriol; 2007 May; 189(9):3613-23. PubMed ID: 17322315 [Abstract] [Full Text] [Related]
5. Crl activates transcription initiation of RpoS-regulated genes involved in the multicellular behavior of Salmonella enterica serovar Typhimurium. Robbe-Saule V, Jaumouillé V, Prévost MC, Guadagnini S, Talhouarne C, Mathout H, Kolb A, Norel F. J Bacteriol; 2006 Jun; 188(11):3983-94. PubMed ID: 16707690 [Abstract] [Full Text] [Related]
6. Multicellular and aggregative behaviour of Salmonella typhimurium strains is controlled by mutations in the agfD promoter. Römling U, Sierralta WD, Eriksson K, Normark S. Mol Microbiol; 1998 Apr; 28(2):249-64. PubMed ID: 9622351 [Abstract] [Full Text] [Related]
7. Comparative genetics of the rdar morphotype in Salmonella. White AP, Surette MG. J Bacteriol; 2006 Dec; 188(24):8395-406. PubMed ID: 17012381 [Abstract] [Full Text] [Related]
8. Alteration of the rugose phenotype in waaG and ddhC mutants of Salmonella enterica serovar Typhimurium DT104 is associated with inverse production of curli and cellulose. Anriany Y, Sahu SN, Wessels KR, McCann LM, Joseph SW. Appl Environ Microbiol; 2006 Jul; 72(7):5002-12. PubMed ID: 16820499 [Abstract] [Full Text] [Related]
9. MlrA, a novel regulator of curli (AgF) and extracellular matrix synthesis by Escherichia coli and Salmonella enterica serovar Typhimurium. Brown PK, Dozois CM, Nickerson CA, Zuppardo A, Terlonge J, Curtiss R. Mol Microbiol; 2001 Jul; 41(2):349-63. PubMed ID: 11489123 [Abstract] [Full Text] [Related]
11. The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Zogaj X, Nimtz M, Rohde M, Bokranz W, Römling U. Mol Microbiol; 2001 Mar; 39(6):1452-63. PubMed ID: 11260463 [Abstract] [Full Text] [Related]
12. Aggregation via the red, dry, and rough morphotype is not a virulence adaptation in Salmonella enterica serovar Typhimurium. White AP, Gibson DL, Grassl GA, Kay WW, Finlay BB, Vallance BA, Surette MG. Infect Immun; 2008 Mar; 76(3):1048-58. PubMed ID: 18195033 [Abstract] [Full Text] [Related]
14. Diversity in biofilm formation and production of curli fimbriae and cellulose of Salmonella Typhimurium strains of different origin in high and low nutrient medium. Castelijn GA, van der Veen S, Zwietering MH, Moezelaar R, Abee T. Biofouling; 2012 Mar; 28(1):51-63. PubMed ID: 22235813 [Abstract] [Full Text] [Related]
15. Oxygen tension and nutrient starvation are major signals that regulate agfD promoter activity and expression of the multicellular morphotype in Salmonella typhimurium. Gerstel U, Römling U. Environ Microbiol; 2001 Oct; 3(10):638-48. PubMed ID: 11722544 [Abstract] [Full Text] [Related]