These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
194 related items for PubMed ID: 14504300
1. Kinetics of recovery of leaf hydraulic conductance and vein functionality from cavitation-induced embolism in sunflower. Trifilò P, Gascó A, Raimondo F, Nardini A, Salleo S. J Exp Bot; 2003 Oct; 54(391):2323-30. PubMed ID: 14504300 [Abstract] [Full Text] [Related]
2. Vein recovery from embolism occurs under negative pressure in leaves of sunflower (Helianthus annuus). Nardini A, Ramani M, Gortan E, Salleo S. Physiol Plant; 2008 Aug; 133(4):755-64. PubMed ID: 18346074 [Abstract] [Full Text] [Related]
3. Hydraulic architecture of plants of Helianthus annuus L. cv. Margot: evidence for plant segmentation in herbs. Lo Gullo MA, Castro Noval L, Salleo S, Nardini A. J Exp Bot; 2004 Jul; 55(402):1549-56. PubMed ID: 15181104 [Abstract] [Full Text] [Related]
4. Leaf hydraulic conductance, measured in situ, declines and recovers daily: leaf hydraulics, water potential and stomatal conductance in four temperate and three tropical tree species. Johnson DM, Woodruff DR, McCulloh KA, Meinzer FC. Tree Physiol; 2009 Jul; 29(7):879-87. PubMed ID: 19429900 [Abstract] [Full Text] [Related]
5. Declining hydraulic efficiency as transpiring leaves desiccate: two types of response. Brodribb TJ, Holbrook NM. Plant Cell Environ; 2006 Dec; 29(12):2205-15. PubMed ID: 17081253 [Abstract] [Full Text] [Related]
6. Leaf xylem embolism, detected acoustically and by cryo-SEM, corresponds to decreases in leaf hydraulic conductance in four evergreen species. Johnson DM, Meinzer FC, Woodruff DR, McCulloh KA. Plant Cell Environ; 2009 Jul; 32(7):828-36. PubMed ID: 19220781 [Abstract] [Full Text] [Related]
7. Water stress-induced modifications of leaf hydraulic architecture in sunflower: co-ordination with gas exchange. Nardini A, Salleo S. J Exp Bot; 2005 Dec; 56(422):3093-101. PubMed ID: 16246857 [Abstract] [Full Text] [Related]
8. Impacts of tree height on leaf hydraulic architecture and stomatal control in Douglas-fir. Woodruff DR, McCulloh KA, Warren JM, Meinzer FC, Lachenbruch B. Plant Cell Environ; 2007 May; 30(5):559-69. PubMed ID: 17407534 [Abstract] [Full Text] [Related]
10. Evidence for xylem embolism as a primary factor in dehydration-induced declines in leaf hydraulic conductance. Johnson DM, McCulloh KA, Woodruff DR, Meinzer FC. Plant Cell Environ; 2012 Apr; 35(4):760-9. PubMed ID: 21999411 [Abstract] [Full Text] [Related]
11. Nutrient availability constrains the hydraulic architecture and water relations of savannah trees. Bucci SJ, Scholz FG, Goldstein G, Meinzer FC, Franco AC, Campanello PI, Villalobos-Vega R, Bustamante M, Miralles-Wilhelm F. Plant Cell Environ; 2006 Dec; 29(12):2153-67. PubMed ID: 17081249 [Abstract] [Full Text] [Related]
12. The hydraulic conductance of Fraxinus ornus leaves is constrained by soil water availability and coordinated with gas exchange rates. Gortan E, Nardini A, Gascó A, Salleo S. Tree Physiol; 2009 Apr; 29(4):529-39. PubMed ID: 19203976 [Abstract] [Full Text] [Related]
13. The contribution of vascular and extra-vascular water pathways to drought-induced decline of leaf hydraulic conductance. Trifiló P, Raimondo F, Savi T, Lo Gullo MA, Nardini A. J Exp Bot; 2016 Sep; 67(17):5029-39. PubMed ID: 27388214 [Abstract] [Full Text] [Related]
14. Combined impacts of irradiance and dehydration on leaf hydraulic conductance: insights into vulnerability and stomatal control. Guyot G, Scoffoni C, Sack L. Plant Cell Environ; 2012 May; 35(5):857-71. PubMed ID: 22070647 [Abstract] [Full Text] [Related]
15. Root pressurization affects growth-induced water potentials and growth in dehydrated maize leaves. Tang AC, Boyer JS. J Exp Bot; 2003 Nov; 54(392):2479-88. PubMed ID: 14512379 [Abstract] [Full Text] [Related]
16. Hydraulic differences along the water transport system of South American Nothofagus species: do leaves protect the stem functionality? Bucci SJ, Scholz FG, Campanello PI, Montti L, Jimenez-Castillo M, Rockwell FA, Manna LL, Guerra P, Bernal PL, Troncoso O, Enricci J, Holbrook MN, Goldstein G. Tree Physiol; 2012 Jul; 32(7):880-93. PubMed ID: 22684354 [Abstract] [Full Text] [Related]
17. Neither xylem collapse, cavitation, or changing leaf conductance drive stomatal closure in wheat. Corso D, Delzon S, Lamarque LJ, Cochard H, Torres-Ruiz JM, King A, Brodribb T. Plant Cell Environ; 2020 Apr; 43(4):854-865. PubMed ID: 31953855 [Abstract] [Full Text] [Related]
19. Coordinated decline of leaf hydraulic and stomatal conductances under drought is not linked to leaf xylem embolism for different grapevine cultivars. Albuquerque C, Scoffoni C, Brodersen CR, Buckley TN, Sack L, McElrone AJ. J Exp Bot; 2020 Dec 31; 71(22):7286-7300. PubMed ID: 33306796 [Abstract] [Full Text] [Related]
20. Minimum hydraulic safety leads to maximum water-use efficiency in a forage grass. Holloway-Phillips MM, Brodribb TJ. Plant Cell Environ; 2011 Feb 31; 34(2):302-13. PubMed ID: 20955227 [Abstract] [Full Text] [Related] Page: [Next] [New Search]