These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
781 related items for PubMed ID: 14505425
1. Theoretical perspectives on the reaction mechanism of serine proteases: the reaction free energy profiles of the acylation process. Ishida T, Kato S. J Am Chem Soc; 2003 Oct 01; 125(39):12035-48. PubMed ID: 14505425 [Abstract] [Full Text] [Related]
2. Role of Asp102 in the catalytic relay system of serine proteases: a theoretical study. Ishida T, Kato S. J Am Chem Soc; 2004 Jun 09; 126(22):7111-8. PubMed ID: 15174882 [Abstract] [Full Text] [Related]
3. Theoretical studies on the deacylation step of serine protease catalysis in the gas phase, in solution, and in elastase. Topf M, Richards WG. J Am Chem Soc; 2004 Nov 10; 126(44):14631-41. PubMed ID: 15521783 [Abstract] [Full Text] [Related]
4. Low-barrier hydrogen bond hypothesis in the catalytic triad residue of serine proteases: correlation between structural rearrangement and chemical shifts in the acylation process. Ishida T. Biochemistry; 2006 May 02; 45(17):5413-20. PubMed ID: 16634622 [Abstract] [Full Text] [Related]
5. Is there a weak H-bond --> LBHB transition on tetrahedral complex formation in serine proteases? Shokhen M, Albeck A. Proteins; 2004 Feb 15; 54(3):468-77. PubMed ID: 14747995 [Abstract] [Full Text] [Related]
6. Mechanisms of antibiotic resistance: QM/MM modeling of the acylation reaction of a class A beta-lactamase with benzylpenicillin. Hermann JC, Hensen C, Ridder L, Mulholland AJ, Höltje HD. J Am Chem Soc; 2005 Mar 30; 127(12):4454-65. PubMed ID: 15783228 [Abstract] [Full Text] [Related]
7. Combined QM/MM mechanistic study of the acylation process in furin complexed with the H5N1 avian influenza virus hemagglutinin's cleavage site. Rungrotmongkol T, Decha P, Sompornpisut P, Malaisree M, Intharathep P, Nunthaboot N, Udommaneethanakit T, Aruksakunwong O, Hannongbua S. Proteins; 2009 Jul 30; 76(1):62-71. PubMed ID: 19089976 [Abstract] [Full Text] [Related]
8. A computational study of the deacylation mechanism of human butyrylcholinesterase. Suárez D, Díaz N, Fontecilla-Camps J, Field MJ. Biochemistry; 2006 Jun 20; 45(24):7529-43. PubMed ID: 16768449 [Abstract] [Full Text] [Related]
9. Transition state stabilization and substrate strain in enzyme catalysis: ab initio QM/MM modelling of the chorismate mutase reaction. Ranaghan KE, Ridder L, Szefczyk B, Sokalski WA, Hermann JC, Mulholland AJ. Org Biomol Chem; 2004 Apr 07; 2(7):968-80. PubMed ID: 15034619 [Abstract] [Full Text] [Related]
10. Reductive half-reaction of aldehyde oxidoreductase toward acetaldehyde: Ab initio and free energy quantum mechanical/molecular mechanical calculations. Dieterich JM, Werner HJ, Mata RA, Metz S, Thiel W. J Chem Phys; 2010 Jan 21; 132(3):035101. PubMed ID: 20095751 [Abstract] [Full Text] [Related]
11. A novel serine protease inhibition motif involving a multi-centered short hydrogen bonding network at the active site. Katz BA, Elrod K, Luong C, Rice MJ, Mackman RL, Sprengeler PA, Spencer J, Hataye J, Janc J, Link J, Litvak J, Rai R, Rice K, Sideris S, Verner E, Young W. J Mol Biol; 2001 Apr 13; 307(5):1451-86. PubMed ID: 11292354 [Abstract] [Full Text] [Related]
12. High level QM/MM modeling of the formation of the tetrahedral intermediate in the acylation of wild type and K73A mutant TEM-1 class A beta-lactamase. Hermann JC, Pradon J, Harvey JN, Mulholland AJ. J Phys Chem A; 2009 Oct 29; 113(43):11984-94. PubMed ID: 19791786 [Abstract] [Full Text] [Related]
13. The role of the putative catalytic base in the phosphoryl transfer reaction in a protein kinase: first-principles calculations. Valiev M, Kawai R, Adams JA, Weare JH. J Am Chem Soc; 2003 Aug 20; 125(33):9926-7. PubMed ID: 12914447 [Abstract] [Full Text] [Related]
14. Modeling protein splicing: reaction pathway for C-terminal splice and intein scission. Mujika JI, Lopez X, Mulholland AJ. J Phys Chem B; 2009 Apr 23; 113(16):5607-16. PubMed ID: 19326906 [Abstract] [Full Text] [Related]
15. Ab initio model study on acetylcholinesterase catalysis: potential energy surfaces of the proton transfer reactions. Tachikawa H, Igarashi M, Nishihira J, Ishibashi T. J Photochem Photobiol B; 2005 Apr 04; 79(1):11-23. PubMed ID: 15792875 [Abstract] [Full Text] [Related]
16. Serine proteases: an ab initio molecular dynamics study. De Santis L, Carloni P. Proteins; 1999 Dec 01; 37(4):611-8. PubMed ID: 10651276 [Abstract] [Full Text] [Related]
17. Molecular dynamics and quantum chemical studies on the catalytic mechanism of Delta5-3-ketosteroid isomerase: the catalytic diad versus the cooperative hydrogen bond mechanism. Park H, Merz KM. J Am Chem Soc; 2003 Jan 29; 125(4):901-11. PubMed ID: 12537487 [Abstract] [Full Text] [Related]
18. Enzyme:substrate hydrogen bond shortening during the acylation phase of serine protease catalysis. Fodor K, Harmat V, Neutze R, Szilágyi L, Gráf L, Katona G. Biochemistry; 2006 Feb 21; 45(7):2114-21. PubMed ID: 16475800 [Abstract] [Full Text] [Related]
19. Theoretical modeling of enzyme catalytic power: analysis of "cratic" and electrostatic factors in catechol O-methyltransferase. Roca M, Martí S, Andrés J, Moliner V, Tuñón I, Bertrán J, Williams IH. J Am Chem Soc; 2003 Jun 25; 125(25):7726-37. PubMed ID: 12812514 [Abstract] [Full Text] [Related]
20. Role of counter ions in trypsin acylation. NaCl effect. Vajda T, Náray-Szabó G. Acta Biochim Biophys Hung; 1988 Jun 25; 23(2):195-202. PubMed ID: 3148252 [Abstract] [Full Text] [Related] Page: [Next] [New Search]