These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
364 related items for PubMed ID: 14510639
1. The nucleotide-binding domain of the Zn2+-transporting P-type ATPase from Escherichia coli carries a glycine motif that may be involved in binding of ATP. Okkeri J, Laakkonen L, Haltia T. Biochem J; 2004 Jan 01; 377(Pt 1):95-105. PubMed ID: 14510639 [Abstract] [Full Text] [Related]
2. Metal-binding characteristics of the amino-terminal domain of ZntA: binding of lead is different compared to cadmium and zinc. Liu J, Stemmler AJ, Fatima J, Mitra B. Biochemistry; 2005 Apr 05; 44(13):5159-67. PubMed ID: 15794653 [Abstract] [Full Text] [Related]
3. The structure of Mg-ATPase nucleotide-binding domain at 1.6 A resolution reveals a unique ATP-binding motif. Håkansson KO. Acta Crystallogr D Biol Crystallogr; 2009 Nov 05; 65(Pt 11):1181-6. PubMed ID: 19923713 [Abstract] [Full Text] [Related]
4. Inter-domain motions of the N-domain of the KdpFABC complex, a P-type ATPase, are not driven by ATP-induced conformational changes. Haupt M, Bramkamp M, Coles M, Altendorf K, Kessler H. J Mol Biol; 2004 Oct 01; 342(5):1547-58. PubMed ID: 15364580 [Abstract] [Full Text] [Related]
5. Expression and mutagenesis of ZntA, a zinc-transporting P-type ATPase from Escherichia coli. Okkeri J, Haltia T. Biochemistry; 1999 Oct 19; 38(42):14109-16. PubMed ID: 10529259 [Abstract] [Full Text] [Related]
6. Role of the insertion domain and the zinc-finger motif of Escherichia coli UvrA in damage recognition and ATP hydrolysis. Wagner K, Moolenaar GF, Goosen N. DNA Repair (Amst); 2011 May 05; 10(5):483-96. PubMed ID: 21393072 [Abstract] [Full Text] [Related]
7. Conservative and nonconservative mutations of the transmembrane CPC motif in ZntA: effect on metal selectivity and activity. Dutta SJ, Liu J, Stemmler AJ, Mitra B. Biochemistry; 2007 Mar 27; 46(12):3692-703. PubMed ID: 17326661 [Abstract] [Full Text] [Related]
8. ATP binding properties of the soluble part of the KdpC subunit from the Escherichia coli K(+)-transporting KdpFABC P-type ATPase. Ahnert F, Schmid R, Altendorf K, Greie JC. Biochemistry; 2006 Sep 12; 45(36):11038-46. PubMed ID: 16953591 [Abstract] [Full Text] [Related]
9. Conserved aspartic acid 714 in transmembrane segment 8 of the ZntA subgroup of P1B-type ATPases is a metal-binding residue. Dutta SJ, Liu J, Hou Z, Mitra B. Biochemistry; 2006 May 09; 45(18):5923-31. PubMed ID: 16669635 [Abstract] [Full Text] [Related]
10. Crystal structure of E. coli Hsp100 ClpB nucleotide-binding domain 1 (NBD1) and mechanistic studies on ClpB ATPase activity. Li J, Sha B. J Mol Biol; 2002 May 10; 318(4):1127-37. PubMed ID: 12054807 [Abstract] [Full Text] [Related]
11. The utility of molecular dynamics simulations for understanding site-directed mutagenesis of glycine residues in biotin carboxylase. Bordelon T, Nilsson Lill SO, Waldrop GL. Proteins; 2009 Mar 10; 74(4):808-19. PubMed ID: 18704941 [Abstract] [Full Text] [Related]
12. Novel Zn2+ coordination by the regulatory N-terminus metal binding domain of Arabidopsis thaliana Zn(2+)-ATPase HMA2. Eren E, González-Guerrero M, Kaufman BM, Argüello JM. Biochemistry; 2007 Jul 03; 46(26):7754-64. PubMed ID: 17550234 [Abstract] [Full Text] [Related]
13. Study of the ATP-binding site of helicase IV from Escherichia coli. Dubaele S, Lourdel C, Chène P. Biochem Biophys Res Commun; 2006 Mar 17; 341(3):828-36. PubMed ID: 16442499 [Abstract] [Full Text] [Related]
14. Interplay between an AAA module and an integrin I domain may regulate the function of magnesium chelatase. Fodje MN, Hansson A, Hansson M, Olsen JG, Gough S, Willows RD, Al-Karadaghi S. J Mol Biol; 2001 Aug 03; 311(1):111-22. PubMed ID: 11469861 [Abstract] [Full Text] [Related]
15. Site-directed mutations in motif VI of Escherichia coli DNA helicase II result in multiple biochemical defects: evidence for the involvement of motif VI in the coupling of ATPase and DNA binding activities via conformational changes. Hall MC, Ozsoy AZ, Matson SW. J Mol Biol; 1998 Mar 27; 277(2):257-71. PubMed ID: 9514760 [Abstract] [Full Text] [Related]
16. Structure of dimeric SecA, the Escherichia coli preprotein translocase motor. Papanikolau Y, Papadovasilaki M, Ravelli RB, McCarthy AA, Cusack S, Economou A, Petratos K. J Mol Biol; 2007 Mar 09; 366(5):1545-57. PubMed ID: 17229438 [Abstract] [Full Text] [Related]
17. The hydrogen bonds between Arg423 and Glu472 and other key residues, Asp443, Ser477, and Pro489, are responsible for the formation and a different positioning of TNP-ATP and ATP within the nucleotide-binding site of Na(+)/K(+)-ATPase. Lánský Z, Kubala M, Ettrich R, Kutý M, Plásek J, Teisinger J, Schoner W, Amler E. Biochemistry; 2004 Jul 06; 43(26):8303-11. PubMed ID: 15222743 [Abstract] [Full Text] [Related]
18. Introducing Wilson disease mutations into the zinc-transporting P-type ATPase of Escherichia coli. The mutation P634L in the 'hinge' motif (GDGXNDXP) perturbs the formation of the E2P state. Okkeri J, Bencomo E, Pietilä M, Haltia T. Eur J Biochem; 2002 Mar 06; 269(5):1579-86. PubMed ID: 11874474 [Abstract] [Full Text] [Related]
19. Functional modules of KdpB, the catalytic subunit of the Kdp-ATPase from Escherichia coli. Bramkamp M, Altendorf K. Biochemistry; 2004 Sep 28; 43(38):12289-96. PubMed ID: 15379567 [Abstract] [Full Text] [Related]
20. The structure and function of heavy metal transport P1B-ATPases. Argüello JM, Eren E, González-Guerrero M. Biometals; 2007 Jun 28; 20(3-4):233-48. PubMed ID: 17219055 [Abstract] [Full Text] [Related] Page: [Next] [New Search]