These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
220 related items for PubMed ID: 14514649
1. Kir6.2 polymorphisms sensitize beta-cell ATP-sensitive potassium channels to activation by acyl CoAs: a possible cellular mechanism for increased susceptibility to type 2 diabetes? Riedel MJ, Boora P, Steckley D, de Vries G, Light PE. Diabetes; 2003 Oct; 52(10):2630-5. PubMed ID: 14514649 [Abstract] [Full Text] [Related]
3. Long-chain CoA esters activate human pancreatic beta-cell KATP channels: potential role in Type 2 diabetes. Bränström R, Aspinwall CA, Välimäki S, Ostensson CG, Tibell A, Eckhard M, Brandhorst H, Corkey BE, Berggren PO, Larsson O. Diabetologia; 2004 Feb; 47(2):277-83. PubMed ID: 14740158 [Abstract] [Full Text] [Related]
4. Acyl coenzyme A esters differentially activate cardiac and beta-cell adenosine triphosphate-sensitive potassium channels in a side-chain length-specific manner. Fox JE, Magga J, Giles WR, Light PE. Metabolism; 2003 Oct; 52(10):1313-9. PubMed ID: 14564684 [Abstract] [Full Text] [Related]
5. Long chain coenzyme A esters activate the pore-forming subunit (Kir6. 2) of the ATP-regulated potassium channel. Bränström R, Leibiger IB, Leibiger B, Corkey BE, Berggren PO, Larsson O. J Biol Chem; 1998 Nov 20; 273(47):31395-400. PubMed ID: 9813050 [Abstract] [Full Text] [Related]
6. Mechanism of cloned ATP-sensitive potassium channel activation by oleoyl-CoA. Gribble FM, Proks P, Corkey BE, Ashcroft FM. J Biol Chem; 1998 Oct 09; 273(41):26383-7. PubMed ID: 9756869 [Abstract] [Full Text] [Related]
7. Single residue (K332A) substitution in Kir6.2 abolishes the stimulatory effect of long-chain acyl-CoA esters: indications for a long-chain acyl-CoA ester binding motif. Bränström R, Leibiger IB, Leibiger B, Klement G, Nilsson J, Arhem P, Aspinwall CA, Corkey BE, Larsson O, Berggren PO. Diabetologia; 2007 Aug 09; 50(8):1670-7. PubMed ID: 17522836 [Abstract] [Full Text] [Related]
8. Effect of repaglinide on cloned beta cell, cardiac and smooth muscle types of ATP-sensitive potassium channels. Dabrowski M, Wahl P, Holmes WE, Ashcroft FM. Diabetologia; 2001 Jun 09; 44(6):747-56. PubMed ID: 11440368 [Abstract] [Full Text] [Related]
9. ATP-dependent potassium channels and type 2 diabetes mellitus. Bonfanti DH, Alcazar LP, Arakaki PA, Martins LT, Agustini BC, de Moraes Rego FG, Frigeri HR. Clin Biochem; 2015 May 09; 48(7-8):476-82. PubMed ID: 25583094 [Abstract] [Full Text] [Related]
10. Current status of the E23K Kir6.2 polymorphism: implications for type-2 diabetes. Riedel MJ, Steckley DC, Light PE. Hum Genet; 2005 Feb 09; 116(3):133-45. PubMed ID: 15565284 [Abstract] [Full Text] [Related]
12. Palmitoylation of the KATP channel Kir6.2 subunit promotes channel opening by regulating PIP2 sensitivity. Yang HQ, Martinez-Ortiz W, Hwang J, Fan X, Cardozo TJ, Coetzee WA. Proc Natl Acad Sci U S A; 2020 May 12; 117(19):10593-10602. PubMed ID: 32332165 [Abstract] [Full Text] [Related]
13. Different molecular sites of action for the KATP channel inhibitors, PNU-99963 and PNU-37883A. Cui Y, Tinker A, Clapp LH. Br J Pharmacol; 2003 May 12; 139(1):122-8. PubMed ID: 12746230 [Abstract] [Full Text] [Related]
14. Long-chain acyl-CoA esters and phosphatidylinositol phosphates modulate ATP inhibition of KATP channels by the same mechanism. Schulze D, Rapedius M, Krauter T, Baukrowitz T. J Physiol; 2003 Oct 15; 552(Pt 2):357-67. PubMed ID: 14561820 [Abstract] [Full Text] [Related]
15. Evidence for a unique long chain acyl-CoA ester binding site on the ATP-regulated potassium channel in mouse pancreatic beta cells. Bränström R, Corkey BE, Berggren PO, Larsson O. J Biol Chem; 1997 Jul 11; 272(28):17390-4. PubMed ID: 9211879 [Abstract] [Full Text] [Related]
16. Cytoplasmic terminus domains of Kir6.x confer different nucleotide-dependent gating on the ATP-sensitive K+ channel. Takano M, Xie LH, Otani H, Horie M. J Physiol; 1998 Oct 15; 512 ( Pt 2)(Pt 2):395-406. PubMed ID: 9763630 [Abstract] [Full Text] [Related]
17. Nateglinide, a D-phenylalanine derivative lacking either a sulfonylurea or benzamido moiety, specifically inhibits pancreatic beta-cell-type K(ATP) channels. Chachin M, Yamada M, Fujita A, Matsuoka T, Matsushita K, Kurachi Y. J Pharmacol Exp Ther; 2003 Mar 15; 304(3):1025-32. PubMed ID: 12604678 [Abstract] [Full Text] [Related]
18. Elevation in intracellular long-chain acyl-coenzyme A esters lead to reduced beta-cell excitability via activation of adenosine 5'-triphosphate-sensitive potassium channels. Webster NJ, Searle GJ, Lam PP, Huang YC, Riedel MJ, Harb G, Gaisano HY, Holt A, Light PE. Endocrinology; 2008 Jul 15; 149(7):3679-87. PubMed ID: 18372336 [Abstract] [Full Text] [Related]
19. Regulated expression of adenosine triphosphate-sensitive potassium channel subunits in pancreatic beta-cells. Moritz W, Leech CA, Ferrer J, Habener JF. Endocrinology; 2001 Jan 15; 142(1):129-38. PubMed ID: 11145575 [Abstract] [Full Text] [Related]
20. Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Gloyn AL, Weedon MN, Owen KR, Turner MJ, Knight BA, Hitman G, Walker M, Levy JC, Sampson M, Halford S, McCarthy MI, Hattersley AT, Frayling TM. Diabetes; 2003 Feb 15; 52(2):568-72. PubMed ID: 12540637 [Abstract] [Full Text] [Related] Page: [Next] [New Search]