These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
681 related items for PubMed ID: 14517554
1. Keap1-null mutation leads to postnatal lethality due to constitutive Nrf2 activation. Wakabayashi N, Itoh K, Wakabayashi J, Motohashi H, Noda S, Takahashi S, Imakado S, Kotsuji T, Otsuka F, Roop DR, Harada T, Engel JD, Yamamoto M. Nat Genet; 2003 Nov; 35(3):238-45. PubMed ID: 14517554 [Abstract] [Full Text] [Related]
2. Nrf2-Keap1 defines a physiologically important stress response mechanism. Motohashi H, Yamamoto M. Trends Mol Med; 2004 Nov; 10(11):549-57. PubMed ID: 15519281 [Abstract] [Full Text] [Related]
3. Small Maf proteins serve as transcriptional cofactors for keratinocyte differentiation in the Keap1-Nrf2 regulatory pathway. Motohashi H, Katsuoka F, Engel JD, Yamamoto M. Proc Natl Acad Sci U S A; 2004 Apr 27; 101(17):6379-84. PubMed ID: 15087497 [Abstract] [Full Text] [Related]
4. Keap1 regulates the oxidation-sensitive shuttling of Nrf2 into and out of the nucleus via a Crm1-dependent nuclear export mechanism. Velichkova M, Hasson T. Mol Cell Biol; 2005 Jun 27; 25(11):4501-13. PubMed ID: 15899855 [Abstract] [Full Text] [Related]
5. The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Cullinan SB, Gordan JD, Jin J, Harper JW, Diehl JA. Mol Cell Biol; 2004 Oct 27; 24(19):8477-86. PubMed ID: 15367669 [Abstract] [Full Text] [Related]
6. Molecular mechanism activating Nrf2-Keap1 pathway in regulation of adaptive response to electrophiles. Itoh K, Tong KI, Yamamoto M. Free Radic Biol Med; 2004 May 15; 36(10):1208-13. PubMed ID: 15110385 [Abstract] [Full Text] [Related]
7. Unique function of the Nrf2-Keap1 pathway in the inducible expression of antioxidant and detoxifying enzymes. Kobayashi A, Ohta T, Yamamoto M. Methods Enzymol; 2004 May 15; 378():273-86. PubMed ID: 15038975 [No Abstract] [Full Text] [Related]
8. Scaffolding of Keap1 to the actin cytoskeleton controls the function of Nrf2 as key regulator of cytoprotective phase 2 genes. Kang MI, Kobayashi A, Wakabayashi N, Kim SG, Yamamoto M. Proc Natl Acad Sci U S A; 2004 Feb 17; 101(7):2046-51. PubMed ID: 14764898 [Abstract] [Full Text] [Related]
9. Evolutionary conserved N-terminal domain of Nrf2 is essential for the Keap1-mediated degradation of the protein by proteasome. Katoh Y, Iida K, Kang MI, Kobayashi A, Mizukami M, Tong KI, McMahon M, Hayes JD, Itoh K, Yamamoto M. Arch Biochem Biophys; 2005 Jan 15; 433(2):342-50. PubMed ID: 15581590 [Abstract] [Full Text] [Related]
10. Chemoprevention through the Keap1-Nrf2 signaling pathway by phase 2 enzyme inducers. Kwak MK, Wakabayashi N, Kensler TW. Mutat Res; 2004 Nov 02; 555(1-2):133-48. PubMed ID: 15476857 [Abstract] [Full Text] [Related]
11. Keap1 regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophiles. Itoh K, Wakabayashi N, Katoh Y, Ishii T, O'Connor T, Yamamoto M. Genes Cells; 2003 Apr 02; 8(4):379-91. PubMed ID: 12653965 [Abstract] [Full Text] [Related]
12. Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Dinkova-Kostova AT, Holtzclaw WD, Cole RN, Itoh K, Wakabayashi N, Katoh Y, Yamamoto M, Talalay P. Proc Natl Acad Sci U S A; 2002 Sep 03; 99(18):11908-13. PubMed ID: 12193649 [Abstract] [Full Text] [Related]
13. Modulation of gene expression by cancer chemopreventive dithiolethiones through the Keap1-Nrf2 pathway. Identification of novel gene clusters for cell survival. Kwak MK, Wakabayashi N, Itoh K, Motohashi H, Yamamoto M, Kensler TW. J Biol Chem; 2003 Mar 07; 278(10):8135-45. PubMed ID: 12506115 [Abstract] [Full Text] [Related]
14. The Keap1 BTB/POZ dimerization function is required to sequester Nrf2 in cytoplasm. Zipper LM, Mulcahy RT. J Biol Chem; 2002 Sep 27; 277(39):36544-52. PubMed ID: 12145307 [Abstract] [Full Text] [Related]
15. Identification of the interactive interface and phylogenic conservation of the Nrf2-Keap1 system. Kobayashi M, Itoh K, Suzuki T, Osanai H, Nishikawa K, Katoh Y, Takagi Y, Yamamoto M. Genes Cells; 2002 Aug 27; 7(8):807-20. PubMed ID: 12167159 [Abstract] [Full Text] [Related]
16. Ultraviolet A irradiation induces NF-E2-related factor 2 activation in dermal fibroblasts: protective role in UVA-induced apoptosis. Hirota A, Kawachi Y, Itoh K, Nakamura Y, Xu X, Banno T, Takahashi T, Yamamoto M, Otsuka F. J Invest Dermatol; 2005 Apr 27; 124(4):825-32. PubMed ID: 15816842 [Abstract] [Full Text] [Related]
17. Select heterozygous Keap1 mutations have a dominant-negative effect on wild-type Keap1 in vivo. Suzuki T, Maher J, Yamamoto M. Cancer Res; 2011 Mar 01; 71(5):1700-9. PubMed ID: 21177379 [Abstract] [Full Text] [Related]
18. Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Zhang DD, Hannink M. Mol Cell Biol; 2003 Nov 01; 23(22):8137-51. PubMed ID: 14585973 [Abstract] [Full Text] [Related]
19. Genetic analysis of cytoprotective functions supported by graded expression of Keap1. Taguchi K, Maher JM, Suzuki T, Kawatani Y, Motohashi H, Yamamoto M. Mol Cell Biol; 2010 Jun 01; 30(12):3016-26. PubMed ID: 20404090 [Abstract] [Full Text] [Related]
20. Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers. Wakabayashi N, Dinkova-Kostova AT, Holtzclaw WD, Kang MI, Kobayashi A, Yamamoto M, Kensler TW, Talalay P. Proc Natl Acad Sci U S A; 2004 Feb 17; 101(7):2040-5. PubMed ID: 14764894 [Abstract] [Full Text] [Related] Page: [Next] [New Search]