These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


288 related items for PubMed ID: 14520563

  • 1. Generation of cyanogen-free transgenic cassava.
    Siritunga D, Sayre RT.
    Planta; 2003 Jul; 217(3):367-73. PubMed ID: 14520563
    [Abstract] [Full Text] [Related]

  • 2. Engineering cyanogen synthesis and turnover in cassava (Manihot esculenta).
    Siritunga D, Sayre R.
    Plant Mol Biol; 2004 Nov; 56(4):661-9. PubMed ID: 15630626
    [Abstract] [Full Text] [Related]

  • 3. Cassava plants with a depleted cyanogenic glucoside content in leaves and tubers. Distribution of cyanogenic glucosides, their site of synthesis and transport, and blockage of the biosynthesis by RNA interference technology.
    Jørgensen K, Bak S, Busk PK, Sørensen C, Olsen CE, Puonti-Kaerlas J, Møller BL.
    Plant Physiol; 2005 Sep; 139(1):363-74. PubMed ID: 16126856
    [Abstract] [Full Text] [Related]

  • 4. Cytochromes P-450 from cassava (Manihot esculenta Crantz) catalyzing the first steps in the biosynthesis of the cyanogenic glucosides linamarin and lotaustralin. Cloning, functional expression in Pichia pastoris, and substrate specificity of the isolated recombinant enzymes.
    Andersen MD, Busk PK, Svendsen I, Møller BL.
    J Biol Chem; 2000 Jan 21; 275(3):1966-75. PubMed ID: 10636899
    [Abstract] [Full Text] [Related]

  • 5. Transgenic approaches for cyanogen reduction in cassava.
    Siritunga D, Sayre R.
    J AOAC Int; 2007 Jan 21; 90(5):1450-5. PubMed ID: 17955993
    [Abstract] [Full Text] [Related]

  • 6. A geminivirus-induced gene silencing system for gene function validation in cassava.
    Fofana IB, Sangaré A, Collier R, Taylor C, Fauquet CM.
    Plant Mol Biol; 2004 Nov 21; 56(4):613-24. PubMed ID: 15630624
    [Abstract] [Full Text] [Related]

  • 7. Overexpression of hydroxynitrile lyase in cassava roots elevates protein and free amino acids while reducing residual cyanogen levels.
    Narayanan NN, Ihemere U, Ellery C, Sayre RT.
    PLoS One; 2011 Nov 21; 6(7):e21996. PubMed ID: 21799761
    [Abstract] [Full Text] [Related]

  • 8. Biosynthesis of the cyanogenic glucosides linamarin and lotaustralin in cassava: isolation, biochemical characterization, and expression pattern of CYP71E7, the oxime-metabolizing cytochrome P450 enzyme.
    Jørgensen K, Morant AV, Morant M, Jensen NB, Olsen CE, Kannangara R, Motawia MS, Møller BL, Bak S.
    Plant Physiol; 2011 Jan 21; 155(1):282-92. PubMed ID: 21045121
    [Abstract] [Full Text] [Related]

  • 9. Characterization and expression profile of two UDP-glucosyltransferases, UGT85K4 and UGT85K5, catalyzing the last step in cyanogenic glucoside biosynthesis in cassava.
    Kannangara R, Motawia MS, Hansen NK, Paquette SM, Olsen CE, Møller BL, Jørgensen K.
    Plant J; 2011 Oct 21; 68(2):287-301. PubMed ID: 21736650
    [Abstract] [Full Text] [Related]

  • 10. Biosynthesis of the nitrile glucosides rhodiocyanoside A and D and the cyanogenic glucosides lotaustralin and linamarin in Lotus japonicus.
    Forslund K, Morant M, Jørgensen B, Olsen CE, Asamizu E, Sato S, Tabata S, Bak S.
    Plant Physiol; 2004 May 21; 135(1):71-84. PubMed ID: 15122013
    [Abstract] [Full Text] [Related]

  • 11. Linamarase expression in cassava cultivars with roots of low- and high-cyanide content.
    Santana MA, Vásquez V, Matehus J, Aldao RR.
    Plant Physiol; 2002 Aug 21; 129(4):1686-94. PubMed ID: 12177481
    [Abstract] [Full Text] [Related]

  • 12. Cyanogenesis in cassava and its molecular manipulation for crop improvement.
    McMahon J, Sayre R, Zidenga T.
    J Exp Bot; 2022 Apr 05; 73(7):1853-1867. PubMed ID: 34905020
    [Abstract] [Full Text] [Related]

  • 13. Over-expression of hydroxynitrile lyase in transgenic cassava roots accelerates cyanogenesis and food detoxification.
    Siritunga D, Arias-Garzon D, White W, Sayre RT.
    Plant Biotechnol J; 2004 Jan 05; 2(1):37-43. PubMed ID: 17166141
    [Abstract] [Full Text] [Related]

  • 14. CRISPR-Cas9-mediated knockout of CYP79D1 and CYP79D2 in cassava attenuates toxic cyanogen production.
    Gomez MA, Berkoff KC, Gill BK, Iavarone AT, Lieberman SE, Ma JM, Schultink A, Karavolias NG, Wyman SK, Chauhan RD, Taylor NJ, Staskawicz BJ, Cho MJ, Rokhsar DS, Lyons JB.
    Front Plant Sci; 2022 Jan 05; 13():1079254. PubMed ID: 37007603
    [Abstract] [Full Text] [Related]

  • 15. Metabolic engineering of valine- and isoleucine-derived glucosinolates in Arabidopsis expressing CYP79D2 from Cassava.
    Mikkelsen MD, Halkier BA.
    Plant Physiol; 2003 Feb 05; 131(2):773-9. PubMed ID: 12586901
    [Abstract] [Full Text] [Related]

  • 16. Two cassava promoters related to vascular expression and storage root formation.
    Zhang P, Bohl-Zenger S, Puonti-Kaerlas J, Potrykus I, Gruissem W.
    Planta; 2003 Dec 05; 218(2):192-203. PubMed ID: 13680228
    [Abstract] [Full Text] [Related]

  • 17. Genomic clustering of cyanogenic glucoside biosynthetic genes aids their identification in Lotus japonicus and suggests the repeated evolution of this chemical defence pathway.
    Takos AM, Knudsen C, Lai D, Kannangara R, Mikkelsen L, Motawia MS, Olsen CE, Sato S, Tabata S, Jørgensen K, Møller BL, Rook F.
    Plant J; 2011 Oct 05; 68(2):273-86. PubMed ID: 21707799
    [Abstract] [Full Text] [Related]

  • 18. Strategies for elimination of cyanogens from cassava for reducing toxicity and improving food safety.
    Nambisan B.
    Food Chem Toxicol; 2011 Mar 05; 49(3):690-3. PubMed ID: 21074593
    [Abstract] [Full Text] [Related]

  • 19. Quantitative trait loci controlling cyanogenic glucoside and dry matter content in cassava (Manihot esculenta Crantz) roots.
    Balyejusa Kizito E, Rönnberg-Wästljung AC, Egwang T, Gullberg U, Fregene M, Westerbergh A.
    Hereditas; 2007 Sep 05; 144(4):129-36. PubMed ID: 17850597
    [Abstract] [Full Text] [Related]

  • 20. Neurotoxic effect of linamarin in rats associated with cassava (Manihot esculenta Crantz) consumption.
    Rivadeneyra-Domínguez E, Vázquez-Luna A, Rodríguez-Landa JF, Díaz-Sobac R.
    Food Chem Toxicol; 2013 Sep 05; 59():230-5. PubMed ID: 23778051
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.