These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
806 related items for PubMed ID: 14522255
1. Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Wang S, Gao J, Lei Q, Rozengurt N, Pritchard C, Jiao J, Thomas GV, Li G, Roy-Burman P, Nelson PS, Liu X, Wu H. Cancer Cell; 2003 Sep; 4(3):209-21. PubMed ID: 14522255 [Abstract] [Full Text] [Related]
2. Targeted biallelic inactivation of Pten in the mouse prostate leads to prostate cancer accompanied by increased epithelial cell proliferation but not by reduced apoptosis. Ma X, Ziel-van der Made AC, Autar B, van der Korput HA, Vermeij M, van Duijn P, Cleutjens KB, de Krijger R, Krimpenfort P, Berns A, van der Kwast TH, Trapman J. Cancer Res; 2005 Jul 01; 65(13):5730-9. PubMed ID: 15994948 [Abstract] [Full Text] [Related]
3. Cooperativity of Nkx3.1 and Pten loss of function in a mouse model of prostate carcinogenesis. Kim MJ, Cardiff RD, Desai N, Banach-Petrosky WA, Parsons R, Shen MM, Abate-Shen C. Proc Natl Acad Sci U S A; 2002 Mar 05; 99(5):2884-9. PubMed ID: 11854455 [Abstract] [Full Text] [Related]
4. The pace of prostatic intraepithelial neoplasia development is determined by the timing of Pten tumor suppressor gene excision. Luchman HA, Benediktsson H, Villemaire ML, Peterson AC, Jirik FR. PLoS One; 2008 Mar 05; 3(12):e3940. PubMed ID: 19081794 [Abstract] [Full Text] [Related]
5. Conditional deletion of the Pten gene in the mouse prostate induces prostatic intraepithelial neoplasms at early ages but a slow progression to prostate tumors. Kwak MK, Johnson DT, Zhu C, Lee SH, Ye DW, Luong R, Sun Z. PLoS One; 2013 Mar 05; 8(1):e53476. PubMed ID: 23308230 [Abstract] [Full Text] [Related]
6. The assessment of PTEN tumor suppressor gene in combination with Gleason scoring and serum PSA to evaluate progression of prostate carcinoma. Koksal IT, Dirice E, Yasar D, Sanlioglu AD, Ciftcioglu A, Gulkesen KH, Ozes NO, Baykara M, Luleci G, Sanlioglu S. Urol Oncol; 2004 Mar 05; 22(4):307-12. PubMed ID: 15283888 [Abstract] [Full Text] [Related]
7. Cooperation between Stat3 and Akt signaling leads to prostate tumor development in transgenic mice. Blando JM, Carbajal S, Abel E, Beltran L, Conti C, Fischer S, DiGiovanni J. Neoplasia; 2011 Mar 05; 13(3):254-65. PubMed ID: 21390188 [Abstract] [Full Text] [Related]
8. Cooperation between FGF8b overexpression and PTEN deficiency in prostate tumorigenesis. Zhong C, Saribekyan G, Liao CP, Cohen MB, Roy-Burman P. Cancer Res; 2006 Feb 15; 66(4):2188-94. PubMed ID: 16489020 [Abstract] [Full Text] [Related]
9. Klf5 deletion promotes Pten deletion-initiated luminal-type mouse prostate tumors through multiple oncogenic signaling pathways. Xing C, Ci X, Sun X, Fu X, Zhang Z, Dong EN, Hao ZZ, Dong JT. Neoplasia; 2014 Nov 15; 16(11):883-99. PubMed ID: 25425963 [Abstract] [Full Text] [Related]
10. Haploinsufficiency of the Pten tumor suppressor gene promotes prostate cancer progression. Kwabi-Addo B, Giri D, Schmidt K, Podsypanina K, Parsons R, Greenberg N, Ittmann M. Proc Natl Acad Sci U S A; 2001 Sep 25; 98(20):11563-8. PubMed ID: 11553783 [Abstract] [Full Text] [Related]
11. Loss of Nkx3.1 leads to the activation of discrete downstream target genes during prostate tumorigenesis. Song H, Zhang B, Watson MA, Humphrey PA, Lim H, Milbrandt J. Oncogene; 2009 Sep 17; 28(37):3307-19. PubMed ID: 19597465 [Abstract] [Full Text] [Related]
12. Expression of PTEN in malignant and non-malignant human prostate tissues: comparison with p27 protein expression. Fenic I, Franke F, Failing K, Steger K, Woenckhaus J. J Pathol; 2004 May 17; 203(1):559-66. PubMed ID: 15095479 [Abstract] [Full Text] [Related]
13. Nkx3.1; Pten mutant mice develop invasive prostate adenocarcinoma and lymph node metastases. Abate-Shen C, Banach-Petrosky WA, Sun X, Economides KD, Desai N, Gregg JP, Borowsky AD, Cardiff RD, Shen MM. Cancer Res; 2003 Jul 15; 63(14):3886-90. PubMed ID: 12873978 [Abstract] [Full Text] [Related]
14. Activation of Akt signaling in prostate induces a TGFβ-mediated restraint on cancer progression and metastasis. Bjerke GA, Yang CS, Frierson HF, Paschal BM, Wotton D. Oncogene; 2014 Jul 10; 33(28):3660-7. PubMed ID: 23995785 [Abstract] [Full Text] [Related]
15. PTEN deficiency is fully penetrant for prostate adenocarcinoma in C57BL/6 mice via mTOR-dependent growth. Blando J, Portis M, Benavides F, Alexander A, Mills G, Dave B, Conti CJ, Kim J, Walker CL. Am J Pathol; 2009 May 10; 174(5):1869-79. PubMed ID: 19395652 [Abstract] [Full Text] [Related]
16. Akt in prostate cancer: possible role in androgen-independence. Ghosh PM, Malik S, Bedolla R, Kreisberg JI. Curr Drug Metab; 2003 Dec 10; 4(6):487-96. PubMed ID: 14683476 [Abstract] [Full Text] [Related]
17. The PTEN/MMAC1 tumor suppressor phosphatase functions as a negative regulator of the phosphoinositide 3-kinase/Akt pathway. Wu X, Senechal K, Neshat MS, Whang YE, Sawyers CL. Proc Natl Acad Sci U S A; 1998 Dec 22; 95(26):15587-91. PubMed ID: 9861013 [Abstract] [Full Text] [Related]
18. Adenoviral-mediated expression of MMAC/PTEN inhibits proliferation and metastasis of human prostate cancer cells. Davies MA, Kim SJ, Parikh NU, Dong Z, Bucana CD, Gallick GE. Clin Cancer Res; 2002 Jun 22; 8(6):1904-14. PubMed ID: 12060635 [Abstract] [Full Text] [Related]
19. Apoptosis in prostate cancer: progressive and therapeutic implications (Review). Wang G, Reed E, Li QQ. Int J Mol Med; 2004 Jul 22; 14(1):23-34. PubMed ID: 15202013 [Abstract] [Full Text] [Related]
20. Loss of heterozygosity and microsatellite instability at chromosomal sites 1Q and 10Q in morphologically distinct regions of late stage prostate lesions. Latini JM, Rieger-Christ KM, Wang DS, Silverman ML, Libertino JA, Summerhayes IC. J Urol; 2001 Nov 22; 166(5):1931-6. PubMed ID: 11586263 [Abstract] [Full Text] [Related] Page: [Next] [New Search]