These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
176 related items for PubMed ID: 14522930
1. Role of GRP58 in mitomycin C-induced DNA cross-linking. Celli CM, Jaiswal AK. Cancer Res; 2003 Sep 15; 63(18):6016-25. PubMed ID: 14522930 [Abstract] [Full Text] [Related]
2. A unique cytosolic activity related but distinct from NQO1 catalyses metabolic activation of mitomycin C. Joseph P, Jaiswal AK. Br J Cancer; 2000 Apr 15; 82(7):1305-11. PubMed ID: 10755406 [Abstract] [Full Text] [Related]
3. NRH:quinone oxidoreductase 2 (NQO2) catalyzes metabolic activation of quinones and anti-tumor drugs. Celli CM, Tran N, Knox R, Jaiswal AK. Biochem Pharmacol; 2006 Jul 28; 72(3):366-76. PubMed ID: 16765324 [Abstract] [Full Text] [Related]
4. Thioredoxin-like domains required for glucose regulatory protein 58 mediated reductive activation of mitomycin C leading to DNA cross-linking. Adikesavan AK, Jaiswal AK. Mol Cancer Ther; 2007 Oct 28; 6(10):2719-27. PubMed ID: 17938265 [Abstract] [Full Text] [Related]
5. Enzymatic and pH modulation of mitomycin C-induced DNA damage in mitomycin C-resistant HCT 116 human colon cancer cells. Pan SS, Yu F, Hipsher C. Mol Pharmacol; 1993 Jun 28; 43(6):870-7. PubMed ID: 8316219 [Abstract] [Full Text] [Related]
6. Non-enzymatic and enzymatic activation of mitomycin C: identification of a unique cytosolic activity. Joseph P, Xu Y, Jaiswal AK. Int J Cancer; 1996 Jan 17; 65(2):263-71. PubMed ID: 8567127 [Abstract] [Full Text] [Related]
7. Kinetics of NAD(P)H:quinone oxidoreductase I (NQO1) inhibition by mitomycin C in vitro and in vivo. Gustafson DL, Siegel D, Rastatter JC, Merz AL, Parpal JC, Kepa JK, Ross D, Long ME. J Pharmacol Exp Ther; 2003 Jun 17; 305(3):1079-86. PubMed ID: 12649308 [Abstract] [Full Text] [Related]
8. NAD(P)H:quinone oxidoreductase gene expression in human colon carcinoma cells: characterization of a mutation which modulates DT-diaphorase activity and mitomycin sensitivity. Traver RD, Horikoshi T, Danenberg KD, Stadlbauer TH, Danenberg PV, Ross D, Gibson NW. Cancer Res; 1992 Feb 15; 52(4):797-802. PubMed ID: 1737339 [Abstract] [Full Text] [Related]
9. DT-diaphorase as a target enzyme for biochemical modulation of mitomycin C. Saeki S, Nishiyama M, Toge T. Hiroshima J Med Sci; 1995 Sep 15; 44(3):55-63. PubMed ID: 8567314 [Abstract] [Full Text] [Related]
10. Tumor-specific synergistic therapy of mitomycin C: modulation of bioreductive activation. Sakamoto N, Toge T, Nishiyama M. Hiroshima J Med Sci; 1997 Jun 15; 46(2):67-73. PubMed ID: 9232934 [Abstract] [Full Text] [Related]
11. NAD(P)H:quinone oxidoreductase expression and mitomycin C resistance developed by human colon cancer HCT 116 cells. Pan SS, Forrest GL, Akman SA, Hu LT. Cancer Res; 1995 Jan 15; 55(2):330-5. PubMed ID: 7812966 [Abstract] [Full Text] [Related]
12. Expression of DT-diaphorase and cytochrome P450 reductase correlates with mitomycin C activity in human bladder tumors. Gan Y, Mo Y, Kalns JE, Lu J, Danenberg K, Danenberg P, Wientjes MG, Au JL. Clin Cancer Res; 2001 May 15; 7(5):1313-9. PubMed ID: 11350900 [Abstract] [Full Text] [Related]
13. A glucose-regulated protein, GRP58, is down-regulated in C57B6 mouse liver after diethylhexyl phthalate exposure. Muhlenkamp CR, Gill SS. Toxicol Appl Pharmacol; 1998 Jan 15; 148(1):101-8. PubMed ID: 9465269 [Abstract] [Full Text] [Related]
14. Predicting tumor responses to mitomycin C on the basis of DT-diaphorase activity or drug metabolism by tumor homogenates: implications for enzyme-directed bioreductive drug development. Phillips RM, Burger AM, Loadman PM, Jarrett CM, Swaine DJ, Fiebig HH. Cancer Res; 2000 Nov 15; 60(22):6384-90. PubMed ID: 11103802 [Abstract] [Full Text] [Related]
15. Curcumin reduced the side effects of mitomycin C by inhibiting GRP58-mediated DNA cross-linking in MCF-7 breast cancer xenografts. Zhou QM, Zhang H, Lu YY, Wang XF, Su SB. Cancer Sci; 2009 Nov 15; 100(11):2040-5. PubMed ID: 19703194 [Abstract] [Full Text] [Related]
16. Mitomycin C resistance induced by TCF-3 overexpression in gastric cancer cell line MKN28 is associated with DT-diaphorase down-regulation. Sagara N, Katoh M. Cancer Res; 2000 Nov 01; 60(21):5959-62. PubMed ID: 11085512 [Abstract] [Full Text] [Related]
17. Arsenite pretreatment enhances the cytotoxicity of mitomycin C in human cancer cell lines via increased NAD(P)H quinone oxidoreductase 1 expression. Lin YL, Ho IC, Su PF, Lee TC. Toxicol Appl Pharmacol; 2006 Aug 01; 214(3):309-17. PubMed ID: 16494910 [Abstract] [Full Text] [Related]
18. [Mechanism of resistance to mitomycin C in a human bladder cancer cell line]. Xu B, Sun Y, Singh SV. Zhonghua Zhong Liu Za Zhi; 1995 Sep 01; 17(5):343-6. PubMed ID: 8697971 [Abstract] [Full Text] [Related]
19. DT-diaphorase as a critical determinant of sensitivity to mitomycin C in human colon and gastric carcinoma cell lines. Mikami K, Naito M, Tomida A, Yamada M, Sirakusa T, Tsuruo T. Cancer Res; 1996 Jun 15; 56(12):2823-6. PubMed ID: 8665520 [Abstract] [Full Text] [Related]
20. [DT-diaphorase]. Mikami K, Shirakusa T, Tsuruo T. Gan To Kagaku Ryoho; 1997 Sep 15; 24(11):1606-10. PubMed ID: 9309161 [Abstract] [Full Text] [Related] Page: [Next] [New Search]