These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


492 related items for PubMed ID: 14528468

  • 1. Venous Doppler ultrasound in 146 fetuses with congenital heart disease.
    Gembruch U, Meise C, Germer U, Berg C, Geipel A.
    Ultrasound Obstet Gynecol; 2003 Oct; 22(4):345-50. PubMed ID: 14528468
    [Abstract] [Full Text] [Related]

  • 2. Arterial Doppler ultrasound in 115 second- and third-trimester fetuses with congenital heart disease.
    Meise C, Germer U, Gembruch U.
    Ultrasound Obstet Gynecol; 2001 May; 17(5):398-402. PubMed ID: 11380963
    [Abstract] [Full Text] [Related]

  • 3. Ductus venosus blood flow resistance and congenital heart defects in the second trimester.
    Hung JH, Fu CY, Lu JH, Hung CY.
    J Clin Ultrasound; 2008 Feb; 36(2):72-8. PubMed ID: 17676619
    [Abstract] [Full Text] [Related]

  • 4. Reference values of fetal ductus venosus, inferior vena cava and hepatic vein blood flow velocities and waveform indices during the second and third trimester of pregnancy.
    Axt-Fliedner R, Wiegank U, Fetsch C, Friedrich M, Krapp M, Georg T, Diedrich K.
    Arch Gynecol Obstet; 2004 Jul; 270(1):46-55. PubMed ID: 15190437
    [Abstract] [Full Text] [Related]

  • 5. Relationship between arterial and venous Doppler and perinatal outcome in fetal growth restriction.
    Baschat AA, Gembruch U, Reiss I, Gortner L, Weiner CP, Harman CR.
    Ultrasound Obstet Gynecol; 2000 Oct; 16(5):407-13. PubMed ID: 11169323
    [Abstract] [Full Text] [Related]

  • 6. Ductus venosus blood flow velocity waveforms as a predictor for fetal outcome in isolated congenital heart disease.
    Baez E, Steinhard J, Huber A, Vetter M, Hackelöer BJ, Hecher K.
    Fetal Diagn Ther; 2005 Oct; 20(5):383-9. PubMed ID: 16113558
    [Abstract] [Full Text] [Related]

  • 7. Abnormal first-trimester ductus venosus blood flow: a marker of cardiac defects in fetuses with normal karyotype and nuchal translucency.
    Martínez JM, Comas M, Borrell A, Bennasar M, Gómez O, Puerto B, Gratacós E.
    Ultrasound Obstet Gynecol; 2010 Mar; 35(3):267-72. PubMed ID: 20052662
    [Abstract] [Full Text] [Related]

  • 8. Doppler indices from inferior vena cava and ductus venosus in predicting pH and oxygen tension in umbilical blood at cordocentesis in growth-retarded fetuses.
    Rizzo G, Capponi A, Talone PE, Arduini D, Romanini C.
    Ultrasound Obstet Gynecol; 1996 Jun; 7(6):401-10. PubMed ID: 8807755
    [Abstract] [Full Text] [Related]

  • 9. The role of fetal nuchal translucency and ductus venosus Doppler at 11-14 weeks of gestation in the detection of major congenital heart defects.
    Favre R, Cherif Y, Kohler M, Kohler A, Hunsinger MC, Bouffet N, Tanghe M, Cancellier M, Nisand I.
    Ultrasound Obstet Gynecol; 2003 Mar; 21(3):239-43. PubMed ID: 12666217
    [Abstract] [Full Text] [Related]

  • 10. Flow velocity waveforms in the ductus venosus, umbilical vein and inferior vena cava in normal human fetuses at 12-15 weeks of gestation.
    Huisman TW, Stewart PA, Wladimiroff JW, Stijnen T.
    Ultrasound Med Biol; 1993 Mar; 19(6):441-5. PubMed ID: 8236586
    [Abstract] [Full Text] [Related]

  • 11. Assessment of fetal compromise by Doppler ultrasound investigation of the fetal circulation. Arterial, intracardiac, and venous blood flow velocity studies.
    Hecher K, Campbell S, Doyle P, Harrington K, Nicolaides K.
    Circulation; 1995 Jan 01; 91(1):129-38. PubMed ID: 7805194
    [Abstract] [Full Text] [Related]

  • 12. Comparison of ductus venosus blood flow waveform indices of 607 singletons with 133 multiples at 10-14 weeks gestation. An evaluation in uncomplicated pregnancies.
    Germer U, Kohl T, Smrcek JM, Geipel A, Berg C, Krapp M, Friedrich HJ, Diedrich K, Gembruch U.
    Arch Gynecol Obstet; 2002 Aug 01; 266(4):187-92. PubMed ID: 12192475
    [Abstract] [Full Text] [Related]

  • 13. Effects of fetal cardiac anomalies on ductus venosus and aortic isthmus doppler profiles.
    İlhan G, İyibozkurt AC, Kalelioğlu Hİ, İbrahimoğlu L, Zebitay AG, Eken MK, Karasu AF.
    Arch Gynecol Obstet; 2016 Feb 01; 293(2):345-50. PubMed ID: 26109506
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. [The role of fetal nuchal translucency (NT) and ductus venosus blood flow (DV) in the detection of congenital heart defects].
    Baś-Budecka E, Perenc M, Sieroszewski P.
    Ginekol Pol; 2010 Apr 01; 81(4):272-6. PubMed ID: 20476599
    [Abstract] [Full Text] [Related]

  • 16. Ductus venosus studies in fetuses at high risk for chromosomal or heart abnormalities: relationship with nuchal translucency measurement and fetal outcome.
    Bilardo CM, Müller MA, Zikulnig L, Schipper M, Hecher K.
    Ultrasound Obstet Gynecol; 2001 Apr 01; 17(4):288-94. PubMed ID: 11339183
    [Abstract] [Full Text] [Related]

  • 17. Clinical utility of ductus venosus flow in fetuses with right-sided congenital heart disease.
    Arya B, Krishnan A, Donofrio MT.
    J Ultrasound Med; 2014 Sep 01; 33(9):1563-71. PubMed ID: 25154936
    [Abstract] [Full Text] [Related]

  • 18. Evaluation of midtrimester ductus venosus diameter and peak systolic velocity to predict late onset small for gestational age fetuses.
    Eraslan Sahin M, Sahin E, Col Madendag I, Madendag Y, Acmaz G, Ozdemir F, Kırlangıç MM, Muderris II.
    J Matern Fetal Neonatal Med; 2022 Oct 01; 35(20):3984-3990. PubMed ID: 33190543
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 25.