These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


207 related items for PubMed ID: 14534034

  • 1. Relearning of locomotion in injured spinal cord: new directions for rehabilitation programs.
    Krishnan RV.
    Int J Neurosci; 2003 Oct; 113(10):1333-51. PubMed ID: 14534034
    [Abstract] [Full Text] [Related]

  • 2. Spinal cord injury: reversing the incorrect cortical maps by inductive lability procedure.
    Krishnan RV.
    Int J Neurosci; 2004 Jun; 114(6):633-53. PubMed ID: 15204057
    [Abstract] [Full Text] [Related]

  • 3. Spinal cord injury: inductive lability can enhance and hasten recovery.
    Krishnan RV.
    Int J Neurosci; 2003 Jun; 113(6):761-75. PubMed ID: 12775341
    [Abstract] [Full Text] [Related]

  • 4. Distributed neural networks for controlling human locomotion: lessons from normal and SCI subjects.
    Ivanenko YP, Poppele RE, Lacquaniti F.
    Brain Res Bull; 2009 Jan 15; 78(1):13-21. PubMed ID: 19070781
    [Abstract] [Full Text] [Related]

  • 5. Botulinum toxin: from spasticity reliever to a neuromotor re-learning tool.
    Krishnan RV.
    Int J Neurosci; 2005 Oct 15; 115(10):1451-67. PubMed ID: 16162450
    [Abstract] [Full Text] [Related]

  • 6. Near-total functional recovery achieved in partial cervical spinal cord injury (50% injury) after 3 years of coordination dynamics therapy.
    Schalow G, Jaigma P, Belle VK.
    Electromyogr Clin Neurophysiol; 2009 Oct 15; 49(2-3):67-91. PubMed ID: 19400403
    [Abstract] [Full Text] [Related]

  • 7. Determinants of locomotor recovery after spinal injury in the cat.
    Rossignol S, Bouyer L, Langlet C, Barthélemy D, Chau C, Giroux N, Brustein E, Marcoux J, Leblond H, Reader TA.
    Prog Brain Res; 2004 Oct 15; 143():163-72. PubMed ID: 14653161
    [Abstract] [Full Text] [Related]

  • 8. Is the recovery of stepping following spinal cord injury mediated by modifying existing neural pathways or by generating new pathways? A perspective.
    de Leon RD, Roy RR, Edgerton VR.
    Phys Ther; 2001 Dec 15; 81(12):1904-11. PubMed ID: 11736625
    [Abstract] [Full Text] [Related]

  • 9. Neuroplasticity after spinal cord injury and training: an emerging paradigm shift in rehabilitation and walking recovery.
    Behrman AL, Bowden MG, Nair PM.
    Phys Ther; 2006 Oct 15; 86(10):1406-25. PubMed ID: 17012645
    [Abstract] [Full Text] [Related]

  • 10. Changes in spinal reflex and locomotor activity after a complete spinal cord injury: a common mechanism?
    Dietz V, Grillner S, Trepp A, Hubli M, Bolliger M.
    Brain; 2009 Aug 15; 132(Pt 8):2196-205. PubMed ID: 19460795
    [Abstract] [Full Text] [Related]

  • 11. Physical rehabilitation as an agent for recovery after spinal cord injury.
    Behrman AL, Harkema SJ.
    Phys Med Rehabil Clin N Am; 2007 May 15; 18(2):183-202, v. PubMed ID: 17543768
    [Abstract] [Full Text] [Related]

  • 12. Development of a human neuro-musculo-skeletal model for investigation of spinal cord injury.
    Paul C, Bellotti M, Jezernik S, Curt A.
    Biol Cybern; 2005 Sep 15; 93(3):153-70. PubMed ID: 16133587
    [Abstract] [Full Text] [Related]

  • 13. The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats.
    Bareyre FM, Kerschensteiner M, Raineteau O, Mettenleiter TC, Weinmann O, Schwab ME.
    Nat Neurosci; 2004 Mar 15; 7(3):269-77. PubMed ID: 14966523
    [Abstract] [Full Text] [Related]

  • 14. Activity-based restorative therapies: concepts and applications in spinal cord injury-related neurorehabilitation.
    Sadowsky CL, McDonald JW.
    Dev Disabil Res Rev; 2009 Mar 15; 15(2):112-6. PubMed ID: 19489091
    [Abstract] [Full Text] [Related]

  • 15. Distributed plasticity of locomotor pattern generators in spinal cord injured patients.
    Grasso R, Ivanenko YP, Zago M, Molinari M, Scivoletto G, Castellano V, Macellari V, Lacquaniti F.
    Brain; 2004 May 15; 127(Pt 5):1019-34. PubMed ID: 14988161
    [Abstract] [Full Text] [Related]

  • 16. Sensorimotor behaviour following incomplete cervical spinal cord injury in the rat.
    Webb AA, Muir GD.
    Behav Brain Res; 2005 Dec 07; 165(2):147-59. PubMed ID: 16157393
    [Abstract] [Full Text] [Related]

  • 17. Restoring walking after spinal cord injury.
    Fouad K, Pearson K.
    Prog Neurobiol; 2004 Jun 07; 73(2):107-26. PubMed ID: 15201036
    [Abstract] [Full Text] [Related]

  • 18. Circulating insulin-like growth factor I and functional recovery from spinal cord injury under enriched housing conditions.
    Koopmans GC, Brans M, Gómez-Pinilla F, Duis S, Gispen WH, Torres-Aleman I, Joosten EA, Hamers FP.
    Eur J Neurosci; 2006 Feb 07; 23(4):1035-46. PubMed ID: 16519668
    [Abstract] [Full Text] [Related]

  • 19. Neural control of locomotion and training-induced plasticity after spinal and cerebral lesions.
    Knikou M.
    Clin Neurophysiol; 2010 Oct 07; 121(10):1655-68. PubMed ID: 20427232
    [Abstract] [Full Text] [Related]

  • 20. Better functional outcome of compression spinal cord injury in mice is associated with enhanced H-reflex responses.
    Lee HJ, Jakovcevski I, Radonjic N, Hoelters L, Schachner M, Irintchev A.
    Exp Neurol; 2009 Apr 07; 216(2):365-74. PubMed ID: 19150614
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.