These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
95 related items for PubMed ID: 14559270
41. Spatial, temporal, and interspecies patterns in fine particulate matter in Texas. Gebhart KA, Malm WC, Ashbaugh LL. J Air Waste Manag Assoc; 2005 Nov; 55(11):1636-48. PubMed ID: 16350362 [Abstract] [Full Text] [Related]
42. Aerosol Mass Spectral Profiles from NAMaSTE Field-Sampled South Asian Combustion Sources. Goetz JD, Giordano MR, Stockwell CE, Bhave PV, Puppala PS, Panday AK, Jayarathne T, Stone EA, Yokelson RJ, DeCarlo PF. ACS Earth Space Chem; 2022 Nov 17; 6(11):2619-2631. PubMed ID: 36425341 [Abstract] [Full Text] [Related]
43. A preliminary look at source-receptor relationships in the Texas-Mexico border area. Gebhart KA, Malm WC, Flores M. J Air Waste Manag Assoc; 2000 May 17; 50(5):858-68. PubMed ID: 10842949 [Abstract] [Full Text] [Related]
44. Spatial variability of unpaved road dust PM10 emission factors near El Paso, Texas. Kuhns H, Gillies J, Etyemezian V, Dubois D, Ahonen S, Nikolic D, Durham C. J Air Waste Manag Assoc; 2005 Jan 17; 55(1):3-12. PubMed ID: 15704535 [Abstract] [Full Text] [Related]
45. Middle- and Neighborhood-Scale Variations of PM10 Source Contributions in Las Vegas, Nevada. Chow JC, Watson JG, Green MC, Lowenthal DH, DuBois DW, Kohl SD, Egami RT, Gillies J, Rogers CF, Frazier CA, Cates W. J Air Waste Manag Assoc; 1999 Jun 17; 49(6):641-54. PubMed ID: 26355370 [Abstract] [Full Text] [Related]
46. Corrigendum to "Ambient black carbon, PM2.5 and PM10 at Patna: influence of anthropogenic emissions and brick kilns" [Sci. Total Environ. 624 (2018) 1387-1400]. Arif M, Kumar R, Kumar R, Zusman E, Gourav P. Sci Total Environ; 2018 Dec 10; 644():1649. PubMed ID: 30068481 [No Abstract] [Full Text] [Related]
47. Emissions and particle-size distribution of some metallic elements of two peat/oil-fired boilers. Itkonen AO, Jantunen MJ. Environ Sci Technol; 1986 Apr 01; 20(4):335-41. PubMed ID: 22300203 [No Abstract] [Full Text] [Related]
48. Regional Crossbedding and Petrology as Source Area Indicators. Potter PE, Siever R. Science; 1955 Nov 25; 122(3178):1021-2. PubMed ID: 17833581 [No Abstract] [Full Text] [Related]
49. Characterization of PM2.5 Carbonaceous Components in a Typical Industrial City in China under Continuous Mitigation Measures. Niu H, Wu C, Schindler M, Silva LFO, Ma B, Ma X, Ji X, Tian Y, Zhu H, Bao X, Cheng Y. Toxics; 2024 Jun 26; 12(7):. PubMed ID: 39058113 [Abstract] [Full Text] [Related]
50. Potential Impacts of Energy and Vehicle Transformation Through 2050 on Oxidative Stress-Inducing PM2.5 Metals Concentration in Japan. Kayaba S, Kajino M. Geohealth; 2023 Oct 26; 7(10):e2023GH000789. PubMed ID: 37842137 [Abstract] [Full Text] [Related]
51. Trace Metals in Global Air: First Results from the GAPS and GAPS Megacities Networks. Mastin J, Saini A, Schuster JK, Harner T, Dabek-Zlotorzynska E, Celo V, Gaga EO. Environ Sci Technol; 2023 Oct 03; 57(39):14661-14673. PubMed ID: 37732724 [Abstract] [Full Text] [Related]
52. Chemical Source Profiles and Toxicity Assessment of Urban Fugitive Dust PM2.5 in Guanzhong Plain, China. Zhao Z, Tian J, Zhang W, Zhang Q, Wu Z, Xing Y, Li F, Song X, Li Z. Toxics; 2023 Aug 07; 11(8):. PubMed ID: 37624181 [Abstract] [Full Text] [Related]
53. Characterization of size-fractionated carbonaceous particles in the small to nano-size range in Batam city, Indonesia. Amin M, Prajati G, Humairoh GP, Putri RM, Phairuang W, Hata M, Furuuchi M. Heliyon; 2023 May 07; 9(5):e15936. PubMed ID: 37215863 [Abstract] [Full Text] [Related]
54. Quantifying international and interstate contributions to primary ambient PM2.5 and PM10 in a complex metropolitan atmosphere. Das S, Prospero JM, Chellam S. Atmos Environ (1994); 2023 Jan 01; 292():. PubMed ID: 36937802 [Abstract] [Full Text] [Related]
55. Industrial Particulate Pollution and Historical Land Use Contribute Metals of Concern to Dust Deposited in Neighborhoods Along the Wasatch Front, UT, USA. Putman AL, Jones DK, Blakowski MA, DiViesti D, Hynek SA, Fernandez DP, Mendoza D. Geohealth; 2022 Nov 01; 6(11):e2022GH000671. PubMed ID: 36340997 [Abstract] [Full Text] [Related]
56. Barking up the Right Tree: Using Tree Bark to Track Airborne Particles in School Environment and Link Science to Society. Leite ADS, Rousse S, Léon JF, Trindade RIF, Haoues-Jouve S, Carvallo C, Dias-Alves M, Proietti A, Nardin E, Macouin M. Geohealth; 2022 Sep 01; 6(9):e2022GH000633. PubMed ID: 36089983 [Abstract] [Full Text] [Related]
57. Impact of COVID-19 lockdown on carbonaceous aerosols in a polluted city: Composition characterization, source apportionment, influence factors of secondary formation. Dong Z, Wang S, Sun J, Shang L, Li Z, Zhang R. Chemosphere; 2022 Nov 01; 307(Pt 3):136028. PubMed ID: 35973498 [Abstract] [Full Text] [Related]
58. Coupling Sr-Nd-Hf Isotope Ratios and Elemental Analysis to Accurately Quantify North African Dust Contributions to PM2.5 in a Complex Urban Atmosphere by Reducing Mineral Dust Collinearity. Das S, Miller BV, Prospero JM, Gaston CJ, Royer HM, Blades E, Sealy P, Chellam S. Environ Sci Technol; 2022 Jun 21; 56(12):7729-7740. PubMed ID: 35670821 [Abstract] [Full Text] [Related]
59. Saccharides as Particulate Matter Tracers of Biomass Burning: A Review. Vincenti B, Paris E, Carnevale M, Palma A, Guerriero E, Borello D, Paolini V, Gallucci F. Int J Environ Res Public Health; 2022 Apr 06; 19(7):. PubMed ID: 35410070 [Abstract] [Full Text] [Related]
60. Isotopic signatures and source apportionment of Pb in ambient PM2.5. Jung CC, Chou CC, Huang YT, Chang SY, Lee CT, Lin CY, Cheung HC, Kuo WC, Chang CW, Chang SC. Sci Rep; 2022 Mar 14; 12(1):4343. PubMed ID: 35288600 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]