These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
235 related items for PubMed ID: 14565591
1. A 3-year longitudinal study of the effect of physical activity on the accrual of bone mineral density in healthy adolescent males. Gustavsson A, Thorsen K, Nordström P. Calcif Tissue Int; 2003 Aug; 73(2):108-14. PubMed ID: 14565591 [Abstract] [Full Text] [Related]
2. Effects of different types of weight-bearing loading on bone mass and size in young males: a longitudinal study. Nordström A, Högström M, Nordström P. Bone; 2008 Mar; 42(3):565-71. PubMed ID: 18191629 [Abstract] [Full Text] [Related]
3. Current physical activity is related to bone mineral density in males but not in females. Högström M, Nordström A, Alfredson H, Lorentzon R, Thorsen K, Nordström P. Int J Sports Med; 2007 May; 28(5):431-6. PubMed ID: 17111323 [Abstract] [Full Text] [Related]
4. Bone gained from physical activity and lost through detraining: a longitudinal study in young males. Nordström A, Olsson T, Nordström P. Osteoporos Int; 2005 Jul; 16(7):835-41. PubMed ID: 15517188 [Abstract] [Full Text] [Related]
5. Bone mineral density of total body, spine, and femoral neck in children and young adults: a cross-sectional and longitudinal study. Lu PW, Briody JN, Ogle GD, Morley K, Humphries IR, Allen J, Howman-Giles R, Sillence D, Cowell CT. J Bone Miner Res; 1994 Sep; 9(9):1451-8. PubMed ID: 7817830 [Abstract] [Full Text] [Related]
6. Bone mineral density and muscle strength in female ice hockey players. Sandström P, Jonsson P, Lorentzon R, Thorsen K. Int J Sports Med; 2000 Oct; 21(7):524-8. PubMed ID: 11071057 [Abstract] [Full Text] [Related]
7. Type of physical activity, muscle strength, and pubertal stage as determinants of bone mineral density and bone area in adolescent boys. Nordström P, Pettersson U, Lorentzon R. J Bone Miner Res; 1998 Jul; 13(7):1141-8. PubMed ID: 9661078 [Abstract] [Full Text] [Related]
8. Bone loss and fracture risk after reduced physical activity. Nordström A, Karlsson C, Nyquist F, Olsson T, Nordström P, Karlsson M. J Bone Miner Res; 2005 Feb; 20(2):202-7. PubMed ID: 15647813 [Abstract] [Full Text] [Related]
9. Differential effects of swimming versus weight-bearing activity on bone mineral status of eumenorrheic athletes. Taaffe DR, Snow-Harter C, Connolly DA, Robinson TL, Brown MD, Marcus R. J Bone Miner Res; 1995 Apr; 10(4):586-93. PubMed ID: 7610929 [Abstract] [Full Text] [Related]
10. Dimensions and estimated mechanical characteristics of the humerus after long-term tennis loading. Haapasalo H, Sievanen H, Kannus P, Heinonen A, Oja P, Vuori I. J Bone Miner Res; 1996 Jun; 11(6):864-72. PubMed ID: 8725185 [Abstract] [Full Text] [Related]
11. Effect of long-term unilateral activity on bone mineral density of female junior tennis players. Haapasalo H, Kannus P, Sievänen H, Pasanen M, Uusi-Rasi K, Heinonen A, Oja P, Vuori I. J Bone Miner Res; 1998 Feb; 13(2):310-9. PubMed ID: 9495526 [Abstract] [Full Text] [Related]
12. High-impact exercise promotes bone gain in well-trained female athletes. Taaffe DR, Robinson TL, Snow CM, Marcus R. J Bone Miner Res; 1997 Feb; 12(2):255-60. PubMed ID: 9041058 [Abstract] [Full Text] [Related]
13. Bone mineral density in postmenarchal adolescent girls in the United States: associated biopsychosocial variables and bone turnover markers. Harel Z, Gold M, Cromer B, Bruner A, Stager M, Bachrach L, Wolter K, Reid C, Hertweck P, Nelson A, Nelson D, Coupey S, Johnson C, Burkman R, Bone H. J Adolesc Health; 2007 Jan; 40(1):44-53. PubMed ID: 17185205 [Abstract] [Full Text] [Related]
14. Rapid loss of bone mineral density of the femoral neck after cessation of ice hockey training: a 6-year longitudinal study in males. Gustavsson A, Olsson T, Nordström P. J Bone Miner Res; 2003 Nov; 18(11):1964-9. PubMed ID: 14606508 [Abstract] [Full Text] [Related]
15. Decreased spinal and femoral neck volumetric bone mineral density (BMD) in men with primary osteoporosis and their first-degree male relatives: familial effect on BMD in men. Erbas B, Ristevski S, Poon C, Yeung S, Ebeling PR. Clin Endocrinol (Oxf); 2007 Jan; 66(1):78-84. PubMed ID: 17201805 [Abstract] [Full Text] [Related]
16. Moderate exercise during growth in prepubertal boys: changes in bone mass, size, volumetric density, and bone strength: a controlled prospective study. Bradney M, Pearce G, Naughton G, Sullivan C, Bass S, Beck T, Carlson J, Seeman E. J Bone Miner Res; 1998 Dec; 13(12):1814-21. PubMed ID: 9844098 [Abstract] [Full Text] [Related]
17. Reduced physical activity corresponds with greater bone loss at the trabecular than the cortical bone sites in men. Tervo T, Nordström P, Neovius M, Nordström A. Bone; 2009 Dec; 45(6):1073-8. PubMed ID: 19631302 [Abstract] [Full Text] [Related]
18. Reduced training is associated with increased loss of BMD. Valdimarsson O, Alborg HG, Düppe H, Nyquist F, Karlsson M. J Bone Miner Res; 2005 Jun; 20(6):906-12. PubMed ID: 15883629 [Abstract] [Full Text] [Related]
19. Daily physical education in the school curriculum in prepubertal girls during 1 year is followed by an increase in bone mineral accrual and bone width--data from the prospective controlled Malmö pediatric osteoporosis prevention study. Valdimarsson O, Linden C, Johnell O, Gardsell P, Karlsson MK. Calcif Tissue Int; 2006 Feb; 78(2):65-71. PubMed ID: 16467972 [Abstract] [Full Text] [Related]
20. Maturity and activity-related differences in bone mineral density: Tanner I vs. II and gymnasts vs. non-gymnasts. Dowthwaite JN, DiStefano JG, Ploutz-Snyder RJ, Kanaley JA, Scerpella TA. Bone; 2006 Oct; 39(4):895-900. PubMed ID: 16757218 [Abstract] [Full Text] [Related] Page: [Next] [New Search]