These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


217 related items for PubMed ID: 14566990

  • 1. In situ hyperspectral data analysis for pigment content estimation of rice leaves.
    Cheng Q, Huang JF, Wang XZ, Wang RC.
    J Zhejiang Univ Sci; 2003; 4(6):727-33. PubMed ID: 14566990
    [Abstract] [Full Text] [Related]

  • 2. Rapid prediction of chlorophylls and carotenoids content in tea leaves under different levels of nitrogen application based on hyperspectral imaging.
    Wang Y, Hu X, Jin G, Hou Z, Ning J, Zhang Z.
    J Sci Food Agric; 2019 Mar 15; 99(4):1997-2004. PubMed ID: 30298617
    [Abstract] [Full Text] [Related]

  • 3. Nitrogen contents of rice panicle and paddy by hyperspectral remote sensing.
    Tang YL, Huang JF, Cai SH, Wang RC.
    Pak J Biol Sci; 2007 Dec 15; 10(24):4420-5. PubMed ID: 19093505
    [Abstract] [Full Text] [Related]

  • 4. [Normalized difference ratio pigment index for estimating chlorophyll and cartenoid contents of in leaves of rice].
    Wang FM, Huang JF, Wang XZ.
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Apr 15; 29(4):1064-8. PubMed ID: 19626904
    [Abstract] [Full Text] [Related]

  • 5. [Study on hyperspectra estimation of pigment contents in canopy leaves of winter wheat under disease stress].
    Jiang JB, Chen YH, Huang WJ.
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Jul 15; 27(7):1363-7. PubMed ID: 17944415
    [Abstract] [Full Text] [Related]

  • 6. Estimation of leaf nitrogen content from spectral characteristics of rice canopy.
    Yang CM.
    ScientificWorldJournal; 2001 Dec 18; 1 Suppl 2():81-9. PubMed ID: 12805736
    [Abstract] [Full Text] [Related]

  • 7. [Discrimination and spectral response characteristic of stress leaves infected by rice Aphelenchoides besseyi Christie].
    Liu ZY, Shi JJ, Wang DC, Huang JF.
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Mar 18; 30(3):710-4. PubMed ID: 20496693
    [Abstract] [Full Text] [Related]

  • 8. Hyperspectral Imaging for Determining Pigment Contents in Cucumber Leaves in Response to Angular Leaf Spot Disease.
    Zhao YR, Li X, Yu KQ, Cheng F, He Y.
    Sci Rep; 2016 Jun 10; 6():27790. PubMed ID: 27283050
    [Abstract] [Full Text] [Related]

  • 9. [The Study of the Spectral Model for Estimating Pigment Contents of Tobacco Leaves in Field].
    Ren X, Lao CL, Xu ZL, Jin Y, Guo Y, Li JH, Yang YH.
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jun 10; 35(6):1654-9. PubMed ID: 26601385
    [Abstract] [Full Text] [Related]

  • 10. Potential of spectral ratio indices derived from hyperspectral LiDAR and laser-induced chlorophyll fluorescence spectra on estimating rice leaf nitrogen contents.
    Du L, Shi S, Yang J, Wang W, Sun J, Cheng B, Zhang Z, Gong W.
    Opt Express; 2017 Mar 20; 25(6):6539-6549. PubMed ID: 28381001
    [Abstract] [Full Text] [Related]

  • 11. [Estimation models of rice LAI and chlorophyll content based on MOD09].
    Cheng Q.
    Ying Yong Sheng Tai Xue Bao; 2006 Aug 20; 17(8):1453-8. PubMed ID: 17066702
    [Abstract] [Full Text] [Related]

  • 12. [Study on hyperspectral estimation of pigment contents in leaves of cotton under disease stress].
    Chen B, Li SK, Wang KR, Wang FY, Xiao CH, Pan WC.
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Feb 20; 30(2):421-5. PubMed ID: 20384137
    [Abstract] [Full Text] [Related]

  • 13. [Hyperspectral remote sensing diagnosis models of rice plant nitrogen nutritional status].
    Tan CW, Zhou QB, Qi L, Zhuang HY.
    Ying Yong Sheng Tai Xue Bao; 2008 Jun 20; 19(6):1261-8. PubMed ID: 18808018
    [Abstract] [Full Text] [Related]

  • 14. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves.
    Gitelson AA, Gritz Y, Merzlyak MN.
    J Plant Physiol; 2003 Mar 20; 160(3):271-82. PubMed ID: 12749084
    [Abstract] [Full Text] [Related]

  • 15. Meta-Analysis of the Detection of Plant Pigment Concentrations Using Hyperspectral Remotely Sensed Data.
    Huang J, Wei C, Zhang Y, Blackburn GA, Wang X, Wei C, Wang J.
    PLoS One; 2015 Mar 20; 10(9):e0137029. PubMed ID: 26356842
    [Abstract] [Full Text] [Related]

  • 16. In vivo noninvasive detection of chlorophyll distribution in cucumber (Cucumis sativus) leaves by indices based on hyperspectral imaging.
    Zou X, Shi J, Hao L, Zhao J, Mao H, Chen Z, Li Y, Holmes M.
    Anal Chim Acta; 2011 Nov 07; 706(1):105-12. PubMed ID: 21995916
    [Abstract] [Full Text] [Related]

  • 17. [Estimation of canopy chlorophyll content using hyperspectral data].
    Dong JJ, Wang L, Niu Z.
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Nov 07; 29(11):3003-6. PubMed ID: 20101973
    [Abstract] [Full Text] [Related]

  • 18. A Novel Method for Estimating Chlorophyll and Carotenoid Concentrations in Leaves: A Two Hyperspectral Sensor Approach.
    Falcioni R, Antunes WC, Demattê JAM, Nanni MR.
    Sensors (Basel); 2023 Apr 09; 23(8):. PubMed ID: 37112184
    [Abstract] [Full Text] [Related]

  • 19. Assessing carotenoid content in plant leaves with reflectance spectroscopy.
    Gitelson AA, Zur Y, Chivkunova OB, Merzlyak MN.
    Photochem Photobiol; 2002 Mar 09; 75(3):272-81. PubMed ID: 11950093
    [Abstract] [Full Text] [Related]

  • 20. Simple and robust methods for remote sensing of canopy chlorophyll content: a comparative analysis of hyperspectral data for different types of vegetation.
    Inoue Y, Guérif M, Baret F, Skidmore A, Gitelson A, Schlerf M, Darvishzadeh R, Olioso A.
    Plant Cell Environ; 2016 Dec 09; 39(12):2609-2623. PubMed ID: 27650474
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.