These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


151 related items for PubMed ID: 14573595

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. The flavonoid galangin inhibits the L1 metallo-beta-lactamase from Stenotrophomonas maltophilia.
    Denny BJ, Lambert PA, West PW.
    FEMS Microbiol Lett; 2002 Feb 19; 208(1):21-4. PubMed ID: 11934488
    [Abstract] [Full Text] [Related]

  • 26. The crystal structure of the L1 metallo-beta-lactamase from Stenotrophomonas maltophilia at 1.7 A resolution.
    Ullah JH, Walsh TR, Taylor IA, Emery DC, Verma CS, Gamblin SJ, Spencer J.
    J Mol Biol; 1998 Nov 20; 284(1):125-36. PubMed ID: 9811546
    [Abstract] [Full Text] [Related]

  • 27. Bulgecin A: a novel inhibitor of binuclear metallo-beta-lactamases.
    Simm AM, Loveridge EJ, Crosby J, Avison MB, Walsh TR, Bennett PM.
    Biochem J; 2005 May 01; 387(Pt 3):585-90. PubMed ID: 15569001
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. Catalytic mechanism of S-adenosylhomocysteine hydrolase. Site-directed mutagenesis of Asp-130, Lys-185, Asp-189, and Asn-190.
    Takata Y, Yamada T, Huang Y, Komoto J, Gomi T, Ogawa H, Fujioka M, Takusagawa F.
    J Biol Chem; 2002 Jun 21; 277(25):22670-6. PubMed ID: 11927587
    [Abstract] [Full Text] [Related]

  • 31. Role of the Zn1 and Zn2 sites in metallo-beta-lactamase L1.
    Hu Z, Periyannan G, Bennett B, Crowder MW.
    J Am Chem Soc; 2008 Oct 29; 130(43):14207-16. PubMed ID: 18831550
    [Abstract] [Full Text] [Related]

  • 32. Modeling the Transient Kinetics of the L1 Metallo-β-Lactamase.
    Khrenova MG, Nemukhin AV.
    J Phys Chem B; 2018 Feb 01; 122(4):1378-1386. PubMed ID: 29298481
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Investigation of a catalytic zinc binding site in Escherichia coli L-threonine dehydrogenase by site-directed mutagenesis of cysteine-38.
    Johnson AR, Chen YW, Dekker EE.
    Arch Biochem Biophys; 1998 Oct 15; 358(2):211-21. PubMed ID: 9784233
    [Abstract] [Full Text] [Related]

  • 36. Identification of metal binding residues for the binuclear zinc phosphodiesterase reveals identical coordination as glyoxalase II.
    Vogel A, Schilling O, Meyer-Klaucke W.
    Biochemistry; 2004 Aug 17; 43(32):10379-86. PubMed ID: 15301536
    [Abstract] [Full Text] [Related]

  • 37. Protonation state of Asp120 in the binuclear active site of the metallo-beta-lactamase from Bacteroides fragilis.
    Dal Peraro M, Vila AJ, Carloni P.
    Inorg Chem; 2003 Jul 14; 42(14):4245-7. PubMed ID: 12844290
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Engineering the substrate specificity of rhizopuspepsin: the role of Asp 77 of fungal aspartic proteinases in facilitating the cleavage of oligopeptide substrates with lysine in P1.
    Lowther WT, Majer P, Dunn BM.
    Protein Sci; 1995 Apr 14; 4(4):689-702. PubMed ID: 7613467
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.